OCRA (Object-Centric Recurrent Attention) source code

Related tags

Deep LearningOCRA
Overview

OCRA (Object-Centric Recurrent Attention) source code

Hossein Adeli and Seoyoung Ahn

Please cite this article if you find this repository useful:


  • For data generation and loading

    1. stimuli_util.ipynb includes all the codes and the instructions for how to generate the datasets for the three tasks; MultiMNIST, MultiMNIST Cluttered and MultiSVHN.
    2. loaddata.py should be updated with the location of the data files for the tasks if not the default used.
  • For training and testing the model:

    1. OCRA_demo.ipynb includes the code for building and training the model. In the first notebook cell, a hyperparameter file should be specified. Parameter files are provided here (different settings are discussed in the supplementary file)

    2. multimnist_params_10glimpse.txt and multimnist_params_3glimpse.txt set all the hyperparameters for MultiMNIST task with 10 and 3 glimpses, respectively.

    OCRA_demo-MultiMNIST_3glimpse_training.ipynb shows how to load a parameter file and train the model.

    1. multimnist_cluttered_params_7glimpse.txt and multimnist_cluttered_params_5glimpse.txt set all the hyperparameters for MultiMNIST Cluttered task with 7 and 5 glimpses, respectively.

    2. multisvhn_params.txt sets all the hyperparameters for the MultiSVHN task with 12 glimpses.

    3. This notebook also includes code for testing a trained model and also for plotting the attention windows for sample images.

    OCRA_demo-cluttered_5steps_loadtrained.ipynb shows how to load a trained model and test it on the test dataset. Example pretrained models are included in the repository under pretrained folder. Download all the pretrained models.

Image-level accuracy averaged from 5 runs

Task (Model name) Error Rate (SD)
MultiMNIST (OCRA-10glimpse) 5.08 (0.17)
Cluttered MultiMNIST (OCRA-7glimpse) 7.12 (1.05)
MultiSVHN (OCRA-12glimpse) 10.07 (0.53)

Validation losses during training

From MultiMNIST OCRA-10glimpse:

From Cluttered MultiMNIST OCRA-7glimpse

Supplementary Results:

Object-centric behavior

The opportunity to observe the object-centric behavior is bigger in the cluttered task. Since the ratio of the glimpse size to the image size is small (covering less than 4 percent of the image), the model needs to optimally move and select the objects to accurately recognize them. Also reducing the number of glimpses has a similar effect, (we experimented with 3 and 5) forcing the model to leverage its object-centric representation to find the objects without being distracted by the noise segments. We include many more examples of the model behavior with both 3 and 5 glimpses to show this behavior.

MultiMNIST Cluttered task with 5 glimpses






MultiMNIST Cluttered task with 3 glimpses





The Street View House Numbers Dataset

We train the model to "read" the digits from left to right by having the order of the predicted sequence match the ground truth from left to right. We allow the model to make 12 glimpses, with the first two not being constrained and the capsule length from every following two glimpses will be read out for the output digit (e.g. the capsule lengths from the 3rd and 4th glimpses are read out to predict digit number 1; the left-most digit and so on). Below are sample behaviors from our model.

The top five rows show the original images, and the bottom five rows show the reconstructions

SVHN_gif

The generation of sample images across 12 glimpses

SVHN_gif

The generatin in a gif fromat

SVHN_gif

The model learns to detect and reconstruct objects. The model achieved ~2.5 percent error rate on recognizing individual digits and ~10 percent error in recognizing whole sequences still lagging SOTA performance on this measure. We believe this to be strongly related to our small two-layer convolutional backbone and we expect to get better results with a deeper one, which we plan to explore next. However, the model shows reasonable attention behavior in performing this task.

Below shows the model's read and write attention behavior as it reads and reconstructs one image.

Herea are a few sample mistakes from our model:

SVHN_error1
ground truth [ 1, 10, 10, 10, 10]
prediction [ 0, 10, 10, 10, 10]

SVHN_error2
ground truth [ 2, 8, 10, 10, 10]
prediction [ 2, 9, 10, 10, 10]

SVHN_error3
ground truth [ 1, 2, 9, 10, 10]
prediction [ 1, 10, 10, 10, 10]

SVHN_error4
ground truth [ 5, 1, 10, 10, 10]
prediction [ 5, 7, 10, 10, 10]


Some MNIST cluttered results

Testing the model on MNIST cluttered dataset with three time steps


Code references:

  1. XifengGuo/CapsNet-Pytorch
  2. kamenbliznashki/generative_models
  3. pitsios-s/SVHN
Owner
Hossein Adeli
Hossein Adeli
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023