ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

Related tags

Deep Learningtent
Overview

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization

This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Minimization by Dequan Wang*, Evan Shelhamer*, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell (ICLR 2021, spotlight).

⛺️ Tent equips a model to adapt itself to new and different data during testing ☀️ 🌧 ❄️ . Tented models adapt online and batch-by-batch to reduce error on dataset shifts like corruptions, simulation-to-real discrepancies, and other differences between training and testing data. This kind of adaptation is effective and efficient: tent makes just one update per batch to not interrupt inference.

We provide example code in PyTorch to illustrate the tent method and fully test-time adaptation setting.

Please check back soon for reference code to exactly reproduce the ImageNet-C results in the paper.

Installation:

pip install -r requirements.txt

tent depends on

and the example depends on

  • RobustBench v0.1 for the dataset and pre-trained model
  • yacs for experiment configuration

but feel free to try your own data and model too!

Usage:

import tent

model = TODO_model()

model = tent.configure_model(model)
params, param_names = tent.collect_params(model)
optimizer = TODO_optimizer(params, lr=1e-3)
tented_model = tent.Tent(model, optimizer)

outputs = tented_model(inputs)  # now it infers and adapts!

Example: Adapting to Image Corruptions on CIFAR-10-C

The example adapts a CIFAR-10 classifier to image corruptions on CIFAR-10-C. The purpose of the example is explanation, not reproduction: exact details of the model architecture, optimization settings, etc. may differ from the paper. That said, the results should be representative, so do give it a try and experiment!

This example compares a baseline without adaptation (source), test-time normalization for updating feature statistics during testing (norm), and our method for entropy minimization during testing (tent). The dataset is CIFAR-10-C, with 15 types and 5 levels of corruption. The model is WRN-28-10, which is the default model for RobustBench.

Usage:

python cifar10c.py --cfg cfgs/source.yaml
python cifar10c.py --cfg cfgs/norm.yaml
python cifar10c.py --cfg cfgs/tent.yaml

Result: tent reduces the error (%) across corruption types at the most severe level of corruption (level 5).

mean gauss_noise shot_noise impulse_noise defocus_blur glass_blur motion_blur zoom_blur snow frost fog brightness contrast elastic_trans pixelate jpeg
source code config 43.5 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3
norm code config 20.4 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3
tent code config 18.6 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2

See the full results for this example in the wandb report.

Correspondence

Please contact Dequan Wang and Evan Shelhamer at dqwang AT cs.berkeley.edu and shelhamer AT google.com.

Citation

If the tent method or fully test-time adaptation setting are helpful in your research, please consider citing our paper:

@inproceedings{wang2021tent,
  title={Tent: Fully Test-Time Adaptation by Entropy Minimization},
  author={Wang, Dequan and Shelhamer, Evan and Liu, Shaoteng and Olshausen, Bruno and Darrell, Trevor},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=uXl3bZLkr3c}
}
Owner
Dequan Wang
CS Ph.D. Student at UC Berkeley
Dequan Wang
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022