Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Overview

Head Detector

Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection module can be installed using pip in order to be able to plug-and-play with HeadHunter-T.

Requirements

  1. Nvidia Driver >= 418

  2. Cuda 10.0 and compaitible CudNN

  3. Python packages : To install the required python packages; conda env create -f head_detection.yml.

  4. Use the anaconda environment head_detection by activating it, source activate head_detection or conda activate head_detection.

  5. Alternatively pip can be used to install required packages using pip install -r requirements.txt or update your existing environment with the aforementioned yml file.

Training

  1. To train a model, define environment variable NGPU, config file and use the following command

$python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env train.py --cfg_file config/config_chuman.yaml --world_size $NGPU --num_workers 4

  1. Training is currently supported over (a) ScutHead dataset (b) CrowdHuman + ScutHead combined, (c) Our proposed CroHD dataset. This can be mentioned in the config file.

  2. To train the model, config files must be defined. More details about the config files are mentioned in the section below

Evaluation and Testing

  1. Unlike the training, testing and evaluation does not have a config file. Rather, all the parameters are set as argument variable while executing the code. Refer to the respective files, evaluate.py and test.py.
  2. evaluate.py evaluates over the validation/test set using AP, MMR, F1, MODA and MODP metrics.
  3. test.py runs the detector over a "bunch of images" in the testing set for qualitative evaluation.

Config file

A config file is necessary for all training. It's built to ease the number of arg variable passed during each execution. Each sub-sections are as elaborated below.

  1. DATASET

    1. Set the base_path as the parent directory where the dataset is situated at.
    2. Train and Valid are .txt files that contains relative path to respective images from the base_path defined above and their corresponding Ground Truth in (x_min, y_min, x_max, y_max) format. Generation files for the three datasets can be seen inside data directory. For example,
    /path/to/image.png
    x_min_1, y_min_1, x_max_1, y_max_1
    x_min_2, y_min_2, x_max_2, y_max_2
    x_min_3, y_min_3, x_max_3, y_max_3
    .
    .
    .
    
    1. mean_std are RGB means and stdev of the training dataset. If not provided, can be computed prior to the start of the training
  2. TRAINING

    1. Provide pretrained_model and corresponding start_epoch for resuming.
    2. milestones are epoch at which the learning rates are set to 0.1 * lr.
    3. only_backbone option loads just the Resnet backbone and not the head. Not applicable for mobilenet.
  3. NETWORK

    1. The mentioned parameters are as described in experiment section of the paper.
    2. When using median_anchors, the anchors have to be defined in anchors.py.
    3. We experimented with mobilenet, resnet50 and resnet150 as alternative backbones. This experiment was not reported in the paper due to space constraints. We found the accuracy to significantly decrease with mobilenet but resnet50 and resnet150 yielded an almost same performance.
    4. We also briefly experimented with Deformable Convolutions but again didn't see noticable improvements in performance. The code we used are available in this repository.

Note :

This codebase borrows a noteable portion from pytorch-vision owing to the fact some of their modules cannot be "imported" as a package.

Citation :

@InProceedings{Sundararaman_2021_CVPR,
    author    = {Sundararaman, Ramana and De Almeida Braga, Cedric and Marchand, Eric and Pettre, Julien},
    title     = {Tracking Pedestrian Heads in Dense Crowd},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {3865-3875}
}
Owner
Ramana Sundararaman
Ramana Sundararaman
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022