Contenido del curso Bases de datos del DCC PUC versión 2021-2

Overview

IIC2413 - Bases de Datos

Tabla de contenidos


Equipo

Profesores

Nombre Sección Email
Andrés Cadiz 1 [email protected]
Raimundo Herrera 2 [email protected]
Matías Toro 3 [email protected]

Cuerpo de ayudantes

Jefes

Nombre Rol Email
Valentina Álvarez Cátedra [email protected]
Andrés Pincheira Proyecto [email protected]

Ayudantes

WIP


Contenidos

Semana Contenido clase Ayudantía
#1 Introducción
#2 Modelo relacional, Álgebra relacional Ayudantía 1 (C1)
#3 SQL Ayudantía 2 (Servidor)
#4 SQL Avanzado
#5 Diagramas ER, Llaves foráneas
#6 Dependencias, Anomalías, Formas normales Ayudantía 3 (PHP)
#7 Storage, Indexing
#8 Evaluación de consultas Ayudantía 4 (C2)
#9 Lógica en la BD
#10 Semana de Receso
#11 Programación Ayudantía (Proyecto)
#12 Transacciones y recuperación de fallas
#13 Data Science y SQL
#14 NoSQL
#15 Privacidad
#16 Data Engineering
#17 No hay clases

Calendario Evaluaciones

Controles

Fecha Evaluación
01/09 Enunciado Control 1
03/09 Entrega Control 1
06/10 Enunciado Control 2
08/10 Entrega Control 2
03/11 Enunciado Control Bonus
05/11 Entrega Control Bonus
24/11 Enunciado Control 3
26/11 Entrega Control 3
13/12 Examen

Proyecto

Fecha Evaluación
01/09 Enunciado Entrega 1
16/09 Entrega 1
22/09 Enunciado Entrega 2
15/10 Entrega 2
3/11 Enunciado Entrega 3
3/12 Entrega 3

Evaluaciones

La nota de controles y exámenes (NCE) corresponde al promedio de los controles y el examen. En otras palabras:

  • NCE = (C1 + C2 + C3 + Ex ) / 4

El control bonus puede reemplazar su peor control, pero no el examen. Y se podrán eximir del examen los alumnos que tengan un promedio entre los 3 controles > 5,5.

La nota del proyecto (NP) corresponde al promedio ponderado de todas las entregas del proyecto. La ponderación es:

Proyecto Porcentaje
Entrega 1 20%
Entrega 2 40%
Entrega 3 40%

Para aprobar el ramo, el alumno debe cumplir que NCE y NP sean >= 3,95. En ese caso, la nota final se calcula como NF = (0,5 NCE + 0,5 NP). En caso contrario, NF = mín{NCE , NP}.


Resumen de notas


Foro

La página de Issues se utilizará como foro para preguntas. Notar que las etiquetas ya se encuentran definidas. Este es el único canal oficial para formular preguntas.

Tanto al publicar como comentar, debes atenerte a las normas del curso. Además, debes utilizar Markdown cuando sea necesario. Por ejemplo, cuando se necesita mostrar código o mensajes de error.

Una vez resuelto el problema, da las gracias y cierra el issue.

Importante: El equipo docente puede tardar más de 24 horas en contestar una issue, aunque normalmente el tiempo de respuesta debería ser menor. Por lo mismo, se recomienda no publicar issues el mismo día de alguna entrega o interrogación.


Política de integridad académica

Los alumnos de la Escuela de Ingeniería de la Pontificia Universidad Católica de Chile deben mantener un comportamiento acorde a la Declaración de Principios de la Universidad. En particular, se espera que mantengan altos estándares de honestidad académica. Cualquier acto deshonesto o fraude académico está prohibido; los alumnos que incurran en este tipo de acciones se exponen a un Procedimiento Sumario. Es responsabilidad de cada alumno conocer y respetar el documento sobre Integridad Académica publicado por la Dirección de Docencia de la Escuela de Ingeniería (disponible en SIDING).

Específicamente, para los cursos del Departamento de Ciencia de la Computación, rige obligatoriamente la siguiente política de integridad académica. Todo trabajo presentado por un alumno para los efectos de la evaluación de un curso debe ser hecho individualmente por el alumno, sin apoyo en material de terceros. Por trabajo se entiende en general las interrogaciones escritas, las tareas de programación u otras, los trabajos de laboratorio, los proyectos, el examen, entre otros.

En particular, si un alumno copia un trabajo, o si a un alumno se le prueba que compró o intentó comprar un trabajo, obtendrá nota final 1.1 en el curso y se solicitará a la Dirección de Docencia de la Escuela de Ingeniería que no le permita retirar el curso de la carga académica semestral.

Por copia se entiende incluir en el trabajo presentado como propio, partes hechas por otra persona. En caso que corresponda a copia a otros alumnos, la sanción anterior se aplicará a todos los involucrados. En todos los casos, se informará a la Dirección de Docencia de la Escuela de Ingeniería para que tome sanciones adicionales si lo estima conveniente.

Obviamente, está permitido usar material disponible públicamente, por ejemplo, libros o contenidos tomados de Internet, siempre y cuando se incluya la referencia correspondiente.

Lo anterior se entiende como complemento al Reglamento del Alumno de la Pontificia Universidad Católica de Chile. Por ello, es posible pedir a la Universidad la aplicación de sanciones adicionales especificadas en dicho reglamento.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022