The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

Overview

AICITY2021_Track2_DMT

The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

Introduction

Detailed information of NVIDIA AI City Challenge 2021 can be found here.

The code is modified from AICITY2020_DMT_VehicleReID, TransReID and reid_strong baseline.

Get Started

  1. cd to folder where you want to download this repo

  2. Run git clone https://github.com/michuanhaohao/AICITY2021_Track2_DMT.git

  3. Install dependencies: pip install requirements.txt

    We use cuda 11.0/python 3.7/torch 1.6.0/torchvision 0.7.0 for training and testing.

  4. Prepare Datasets Download Original dataset, Cropped_dataset, and SPGAN_dataset.

├── AIC21/
│   ├── AIC21_Track2_ReID/
│   	├── image_train/
│   	├── image_test/
│   	├── image_query/
│   	├── train_label.xml
│   	├── ...
│   	├── training_part_seg/
│   	    ├── cropped_patch/
│   	├── cropped_aic_test
│   	    ├── image_test/
│   	    ├── image_query/		
│   ├── AIC21_Track2_ReID_Simulation/
│   	├── sys_image_train/
│   	├── sys_image_train_tr/
  1. Put pre-trained models into ./pretrained/
    • resnet101_ibn_a-59ea0ac6.pth, densenet169_ibn_a-9f32c161.pth, resnext101_ibn_a-6ace051d.pth and se_resnet101_ibn_a-fabed4e2.pth can be downloaded from IBN-Net
    • resnest101-22405ba7.pth can be downloaded from ResNest
    • jx_vit_base_p16_224-80ecf9dd.pth can be downloaded from here

Trainint and Test

We utilize 1 GPU (32GB) for training. You can train and test one backbone as follow.

# ResNext101-IBN-a
python train.py --config_file configs/stage1/resnext101a_384.yml MODEL.DEVICE_ID "('0')"
python train_stage2_v1.py --config_file configs/stage2/resnext101a_384.yml MODEL.DEVICE_ID "('0')" OUTPUT_DIR './logs/stage2/resnext101a_384/v1'
python train_stage2_v2.py --config_file configs/stage2/resnext101a_384.yml MODEL.DEVICE_ID "('0')" OUTPUT_DIR './logs/stage2/resnext101a_384/v2'

python test.py --config_file configs/stage2/101a_384.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT './logs/stage2/resnext101a_384/v1/resnext101_ibn_a_2.pth' OUTPUT_DIR './logs/stage2/resnext101a_384/v1'
python test.py --config_file configs/stage2/101a_384.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT './logs/stage2/resnext101a_384/v2/resnext101_ibn_a_2.pth' OUTPUT_DIR './logs/stage2/resnext101a_384/v2'

You should train camera and viewpoint models before the inference stage. You also can directly use our trained results (track_cam_rk.npy and track_view_rk.npy):

python train_cam.py --config_file configs/camera_view/camera_101a.yml
python train_view.py --config_file configs/camera_view/view_101a.yml

You can train all eight backbones by checking run.sh. Then, you can ensemble all results:

python ensemble.py

All trained models can be downloaded from here

Leaderboard

TeamName mAP Link
DMT(Ours) 0.7445 code
NewGeneration 0.7151 code
CyberHu 0.6550 code

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{luo2021empirical,
 title={An Empirical Study of Vehicle Re-Identification on the AI City Challenge},
 author={Luo, Hao and Chen, Weihua and Xu Xianzhe and Gu Jianyang and Zhang, Yuqi and Chong Liu and Jiang Qiyi and He, Shuting and Wang, Fan and Li, Hao},
 booktitle={Proc. CVPR Workshops},
 year={2021}
}
Owner
Hao Luo
Ph.D., Alibaba DAMO Academy&Zhejiang University
Hao Luo
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022