This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.

Overview

NoW Evaluation

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.

Evaluation metric

Given a single monocular image, the challenge consists of reconstructing a 3D face. Since the predicted meshes occur in different local coordinate systems, the reconstructed 3D mesh is rigidly aligned (rotation, translation, and scaling) to the scan using a set of corresponding landmarks between the prediction and the scan. We further perform a rigid alignment based on the scan-to-mesh distance (which is the absolute distance between each scan vertex and the closest point in the mesh surface) between the ground truth scan, and the reconstructed mesh using the landmarks alignment as initialization. For more details, see the NoW Website or the RingNet paper.

Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision
Soubhik Sanyal, Timo Bolkart, Haiwen Feng, Michael J. Black
Computer Vision and Pattern Recognition (CVPR) 2019

Clone the repository

git clone https://github.com/soubhiksanyal/now_evaluation.git

Installation

Please install the virtual environment

mkdir <your_home_dir>/.virtualenvs
python3 -m venv <your_home_dir>/.virtualenvs/now_evaluation
source <your_home_dir>/.virtualenvs/now_evaluation/bin/activate

Make sure your pip version is up-to-date:

pip install -U pip

Install the requirements by using:

pip install -r requirements.txt

Install mesh processing libraries from MPI-IS/mesh within the virtual environment.

Installing Scan2Mesh distance:

Clone the flame-fitting repository and copy the required folders by the following comments

git clone https://github.com/Rubikplayer/flame-fitting.git
cp flame-fitting/smpl_webuser now_evaluation/smpl_webuser -r
cp flame-fitting/sbody now_evaluation/sbody -r

Clone Eigen and copy the it to the following folder

git clone https://gitlab.com/libeigen/eigen.git
cp eigen now_evaluation/sbody/alignment/mesh_distance/eigen -r

Edit the file 'now_evaluation/sbody/alignment/mesh_distance/setup.py' to set EIGEN_DIR to the location of Eigen. Then compile the code by following command

cd now_evaluation/sbody/alignment/mesh_distance
make

The installation of Scan2Mesh is followed by the codebase provided by flame-fitting. Please check that repository for more detailed instructions on Scan2Mesh installation.

Evaluation

Download the NoW Dataset and the validation set scans from the Now websiste, and predict 3D faces for all validation images.

Check data setup

Before running the now evaluation, 1) check that the predicted meshes can be successfuly loaded by the used mesh loader by running

python check_predictions.py <predicted_mesh_path>

Running this loads the <predicted_mesh_path> mesh and exports it to ./predicted_mesh_export.obj. Please check if this file can be loaded by e.g. MeshLab or any other mesh loader, and that the resulting mesh looks like the input mesh.

2) check that the landmarks for the predicted meshes are correct by running

python check_predictions.py <predicted_mesh_path> <predicted_mesh_landmark_path> <gt_scan_path> <gt_lmk_path> 

Running this loads the <predicted_mesh_path> mesh, rigidly aligns it with the the scan <gt_scan_path>, and outputs the aligned mesh to ./predicted_mesh_aligned.obj, and the cropped scan to ./cropped_scan.obj. Please check if the output mesh and scan are rigidly aligned by jointly opening them in e.g. MeshLab.

Error computation

To run the now evaluation on the validation set, run

python compute_error.py

The function in metric_computation() in compute_error.py is used to compute the error metric. You can run python compute_error.py <dataset_folder> <predicted_mesh_folder> <validatton_or_test_set>. For more options please see compute_error.py

The predicted_mesh_folder should in a similar structure as mentioned in the RingNet website.

Prior to computing the point-to-surface distance, a rigid alignment between each predicted mesh and the scan is computed. The rigid alignment computation requires for each predicted mesh a file with following 7 landmarks:

Visualization

Visualization of the reconstruction error is best done with a cumulative error curve. To generate a cumulative error plot, call generating_cumulative_error_plots() in the cumulative_errors.py with the list of output files and the corresponding list method names.

Note that ground truth scans are only provided for the validation set. In order to participate in the NoW challenge, please submit the test set predictions to [email protected] as described here.

Known issues

The used mesh loader is unable to load OBJ files with vertex colors appended to the vertices. I.e. if the OBJ contains lines of the following format v vx vy vz cr cg cb\n, export the meshes without vertex colors.

License

By using the model or the code code, you acknowledge that you have read the license terms of RingNet, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not use the code.

Citing

This codebase was developed for evaluation of the RingNet project. When using the code or NoW evaluation results in a scientific publication, please cite

@inproceedings{RingNet:CVPR:2019,
title = {Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision},
author = {Sanyal, Soubhik and Bolkart, Timo and Feng, Haiwen and Black, Michael},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
month = jun,
year = {2019},
month_numeric = {6}
}
Owner
Soubhik Sanyal
Currently Applied Scientist at Amazon Research PhD Student
Soubhik Sanyal
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022