Repositório da disciplina de APC, no segundo semestre de 2021

Related tags

Deep Learning2021-2
Overview

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf

Algoritmos e Programação de Computadores

Este é o Git da disciplina Algoritmos e Programação de Computadores. Aqui será compartilhado o material produzido em sala de aula assim como tarefas, wiki e discussões. Este arquivo contêm informações básicas sobre a disciplina e o plano de ensino do semestre.

Informações básicas

Curso:
Engenharias
Professor:
Fábio Macêdo Mendes
Disciplina:
Algoritmos e Programação de Computadores
Semestre/ano:
02/2021
Carga horária:
90 h
Créditos:
06

Ementa

  • Princípios fundamentais de construção de programas.
  • Construção de algoritmos e sua representação em pseudocódigo e linguagens de alto nível.
  • Noções de abstração.
  • Especificação de variáveis e funções.
  • Testes e depuração.
  • Padrões de soluções em programação.
  • Noções de programação estruturada.
  • Identificadores e tipos.
  • Operadores e expressões.
  • Estruturas de controle: condicional e repetição.
  • Entrada e saída de dados.
  • Estruturas de dados estáticas: agregados homogêneos e heterogêneos.
  • Iteração e recursão.
  • Noções de análise de custo e complexidade.
  • Desenvolvimento sistemático e implementação de programas.
  • Estruturação, depuração, testes e documentação de programas.
  • Resolução de problemas.
  • Aplicações em casos reais e questões ambientais.

Horário das aulas e atendimento

Aulas teóricas e de exercícios: segundas (às 14h), quartas e sextas (às 10h) Atendimento e monitoria: a definir

Informações importantes

Este curso utiliza uma série de plataformas diferentes. A comunicação com a turma é feita através do Telegram e Github. As aulas síncronas utilizam a plataforma Teams.

Veja mais detalhes sobre as plataformas utilizadas e como configurar os ambientes de programação no arquivo INSTALACAO.md neste repositório.

Critérios de avaliação

A avaliação é baseada no domínio de diversas competências e obtenção de medalhas relacionadas ao conteúdo do curso. A lista de competências está no arquivo COMPETENCIAS.md e a de medalhas em MEDALHAS.md

Cada competência é avaliada com uma nota numérica, onde a pontuação pode ser obtida por vários meios (provas, trabalhos, tutoriais, entre outros). O aluno precisa de uma nota numérica maior ou igual a 10 para ser considerado proficiente em cada uma destas competências.

As competências são itens considerados essenciais para a compreensão da disciplina e todos alunos precisam demonstrar proficiência em todas estas competências para serem aprovados.

Medalhas representam feitos que demonstram conhecimento mais aprofundado sobre os assuntos abordados no curso, além de habilitarem menções mais altas.

A menção final é calculada da seguinte maneira:

  • MI: Obteve pelo menos metade das competências básicas
  • MM: Obteve todas as competências básicas menos uma.
  • MS: Obteve todas as competências básicas e pelo menos 10 medalhas.
  • SS: Obteve todas as competências básicas e pelo menos 20 medalhas.

Código de ética e conduta

As avaliações serão realizadas com auxílio do computador. Todas as submissões poderão ser processadas por um programa de detecção de plágio. Qualquer atividade onde for detectada a presença de plágio será anulada sem a possibilidade de substituição. Não será feita qualquer distinção entre o aluno que forneceu a resposta para cópia e o aluno que obteve a mesma.

Bibliografia principal

Introdução à Programação com Python: Nilo Ney Coutinho Menezes, Novatec, 2014

QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022