[email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation | PythonRepo" /> [email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation | PythonRepo">

Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Related tags

Deep LearningMoKGE
Overview

Diversifying Commonsense Reasoning Generation on Knowledge Graph

Introduction

-- This is the pytorch implementation of our ACL 2022 paper "Diversifying Content Generation for Commonsense Reasoning with Mixture of Knowledge Graph Experts" [PDF]. In this paper, we propose MoKGE, a novel method that diversifies the generative commonsense reasoning by a mixture of expert (MoE) strategy on knowledge graphs (KG). A set of knowledge experts seek diverse reasoning on KG to encourage various generation outputs.

Create an environment

transformers==3.3.1
torch==1.7.0
nltk==3.4.5
networkx==2.1
spacy==2.2.1
torch-scatter==2.0.5+${CUDA}
psutil==5.9.0

-- For torch-scatter, ${CUDA} should be replaced by either cu101 cu102 cu110 or cu111 depending on your PyTorch installation. For more information check here.

-- A docker environment could be downloaded from wenhaoyu97/divgen:5.0

We summarize some common environment installation problems and solutions here.

Preprocess the data

-- Extract English ConceptNet and build graph.

cd data
wget https://s3.amazonaws.com/conceptnet/downloads/2018/edges/conceptnet-assertions-5.6.0.csv.gz
gzip -d conceptnet-assertions-5.6.0.csv.gz
cd ../preprocess
python extract_cpnet.py
python graph_construction.py

-- Preprocess multi-hop relational paths. Set $DATA to either anlg or eg.

export DATA=eg
python ground_concepts_simple.py $DATA
python find_neighbours.py $DATA
python filter_triple.py $DATA

Run Baseline

Baseline Name Run Baseline Model Venue and Reference
Truncated Sampling bash scripts/TruncatedSampling.sh Fan et al., ACL 2018 [PDF]
Nucleus Sampling bash scripts/NucleusSampling.sh Holtzman et al., ICLR 2020 [PDF]
Variational AutoEncoder bash scripts/VariationalAutoEncoder.sh Gupta et al., AAAI 2018 [PDF]
Mixture of Experts
(MoE-embed)
bash scripts/MixtureOfExpertCho.sh Cho et al., EMNLP 2019 [PDF]
Mixture of Experts
(MoE-prompt)
bash scripts/MixtureOfExpertShen.sh Shen et al., ICML 2019 [PDF]

Run MoKGE

-- Independently parameterizing each expert may exacerbate overfitting since the number of parameters increases linearly with the number of experts. We follow the parameter sharing schema in Cho et al., (2019); Shen et al., (2019) to avoid this issue. This only requires a negligible increase in parameters over the baseline model that does not uses MoE. Speficially, Cho et al., (2019) added a unique expert embedding to each input token, while Shen et al., (2019) added an expert prefix token before the input text sequence.

-- MoKGE-embed (Cho et al.,) bash scripts/KGMixtureOfExpertCho.sh

-- MoKGE-prompt (shen et al.,) bash scripts/KGMixtureOfExpertShen.sh

Citation

@inproceedings{yu2022diversifying,
  title={Diversifying Content Generation for Commonsense Reasoning with Mixture of Knowledge Graph Experts},
  author={Yu, Wenhao and Zhu, Chenguang and Qin, Lianhui and Zhang, Zhihan and Zhao, Tong and Jiang, Meng},
  booktitle={Findings of Annual Meeting of the Association for Computational Linguistics (ACL)},
  year={2022}
}

Please kindly cite our paper if you find this paper and the codes helpful.

Acknowledgements

Many thanks to the Github repository of Transformers, KagNet and MultiGen.

Part of our codes are modified based on their codes.

Owner
DM2 Lab @ ND
Data Mining towards Decision Making Lab at University of Notre Dame
DM2 Lab @ ND
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022