Material del curso IIC2233 Programación Avanzada 📚

Overview

Contenidos

Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los contenidos se subirán en paquetes de una o varias semanas seguidas, pero para una semana dada, solo es necesario estudiar los contenidos de dicha semana, y no las semanas posteriores incluidas en el paquete.

Los contenidos se pondrán en práctica mediante actividades (formativas o sumativas). El contenido de las actividades es acumulativo, así que la materia vista en semanas anteriores también puede entrar en las actividades posteriores, pero tendrán foco sobre solo uno de los contenidos semanales.

La semana 0 corresponde a la primera semana de clases, en la cual no habrá una actividad de contenidos, sino que una introducción al formato del curso. La carpeta semana 0 de todas formas contiene material de estudio que se asumirá conocido y se aplicará durante todo el curso, y específicamente se evaluará en la primera tarea del curso (T0), en lugar de en una actividad.

La numeración de semanas que siguen, respeta el orden temporal del calendario académico, por lo que la semana 9 es saltada debido a la Semana de Receso a nivel UC, mientras que la semana 10 se dejará como repaso con actividades/contenido por definir.

La siguiente tabla muestra la correspondencia de actividades y los contenidos semanales:

Actividad Tipo Semana de contenido Contenido
- - Semana 0 Introducción al curso
AF1 Formativa Semana 1 Estructuras de datos built-ins
AF2 Formativa Semana 2 Programación orientada a objetos I
AS1 Sumativa Semana 3 Programación orientada a objetos II
- - Semana 4 Excepciones
- - Semana 5 -
AS2 Sumativa Semana 6 Threading
- - Semana 7 Interfaces gráficas I
AS3 Sumativa Semana 8 Interfaces gráficas II
- - Semana 9 I/O y Serialización
AF3 Formativa Semana 10 Networking
- - Semana 11 Estructuras nodales I
AS4 Formativa Semana 12 Estructuras nodales II
AF4 - Semana 13 Iterables
- - Semana 14 Material bonus

Si tienes dudas sobre el contenido puedes abrir una issue aquí.

Preguntas frecuentes

  1. Yo abro los notebooks, hago cambios para ver como funcionan, y a la semana siguiente al hacer git pull me sale un error que dice "Your local changes to the following files would be overwritten by merge" ¿Qué puedo hacer?

    1. Siempre puedes clonar el repositorio otra vez, pero no es la idea. Lo que debes hacer es guardar tus cambios en alguna parte, hacer pull, y luego volver a aplicar tus cambios. Para eso coloca los siguientes comandos:
    git stash     # Guarda los cambios hechos en otra parte. Desaparecen del working directory.
    git pull      # El pull que queríamos hacer en un principio.
    git stash pop # Regresa los cambios hechos por ti al working directory.
Owner
IIC2233 @ UC
IIC2233 Programación Avanzada @ Pontificia Universidad Católica de Chile
IIC2233 @ UC
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022