NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

Overview

Banner

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification uses historical data from Gloucestershire Hospitals NHS Foundation Trust to predict how long a patient will stay in hospital upon admission.

As the successful candidate from a Dragons’ Den-style project pitch, Long Stayer Risk Stratification was first picked as a pilot project for the AI (Artificial Intelligence) Skunkworks team in April 2021.

Background

Hospital long stayers, those with a length of stay (LoS) of 21 days or longer, have significantly worse medical and social outcomes than other patients. Long-stayers are often medically optimised (fit for discharge) many days before their actual discharge. Moreover, there are a complex mixture of medical, cultural and socioeconomic factors which contribute to the causes of unnecessary long stays.

This repository contains a proof-of-concept demonstrator, developed as part of a research project - a collaboration between Polygeist, Gloucestershire Hospitals NHS Foundation Trust, NHSX, and the Home Office’s Accelerated Capability Environment (ACE). The project aimed to achieve two core objectives:
firstly, to determine if an experimental artificial intelligence (AI) approach to predicting hospital long-stayers was possible; secondly, if so, to produce a proof-of-concept (PoC) risk stratification tool.

Stratification Tool

Banner

The tool displays the LTSS for a patient record, between Level 1 and 5; with 5 being the most severe risk of the patient becoming a long stayer. The tool allows exploration of various factors, and enables the user to edit those entries to produce refined or hypothetical estimates of the patient's risk.

The tool has shown good risk stratification for real data, with Level 1 consisted of 99% short stayers, and minor cases, with less than 1% of long-stayers being classified as very low risk. Moreover, 66% of all long-stayers were classified as Risk Category 4 and 5, with proportions steadily increasing through the categories. Risk Category 5 also stratified those patients with long and serious hospital stays under the long-stay threshold (serious and lengthy stays).

Documentation:

Docs Description
REST API API Endpoint descriptions and usage examples
LTSS Flask App API Package documentation for the ltss Python package and incorporated submodules
Deployment Instructions Build and run instruction for development or production deployments
WebUI Overview Description of UI components and application structure
Configuration Files Overview of provided configuration files
Production Build Configuration Files Overview of the configuration files provided for production build Docker containers
Training Description of the training process for the models used in the LTSS API

NHS AI Lab Skunkworks

The project is supported by the NHS AI Lab Skunkworks, which exists within the NHS AI Lab to support the health and care community to rapidly progress ideas from the conceptual stage to a proof of concept.

Find out more about the NHS AI Lab Skunkworks. Join our Virtual Hub to hear more about future crowdsourcing event opportunities. Get in touch with the Skunkworks team at [email protected].

Owner
NHSX
NHSX
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022