Embracing Single Stride 3D Object Detector with Sparse Transformer

Related tags

Deep LearningSST
Overview

SST: Single-stride Sparse Transformer

This is the official implementation of paper:

Embracing Single Stride 3D Object Detector with Sparse Transformer

Authors: Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang Zhao, Feng Wang, Naiyan Wang, Zhaoxiang Zhang

Paper Link (Check again on Monday)

Introduction and Highlights

  • SST is a single-stride network, which maintains original feature resolution from the beginning to the end of the network. Due to the characterisric of single stride, SST achieves exciting performances on small object detection (Pedestrian, Cyclist).
  • For simplicity, except for backbone, SST is almost the same with the basic PointPillars in MMDetection3D. With such a basic setting, SST achieves state-of-the-art performance in Pedestrian and Cyclist and outperforms PointPillars more than 10 AP only at a cost of 1.5x latency.
  • SST consists of 6 Regional Sparse Attention (SRA) blocks, which deal with the sparse voxel set. It's similar to Submanifold Sparse Convolution (SSC), but much more powerful than SSC. It's locality and sparsity guarantee the efficiency in the single stride setting.
  • The SRA can also be used in many other task to process sparse point clouds. Our implementation of SRA only relies on the pure Python APIs in PyTorch without engineering efforts as taken in the CUDA implementation of sparse convolution.
  • Large room for further improvements. For example, second stage, anchor-free head, IoU scores and advanced techniques from ViT, etc.

Usage

PyTorch >= 1.9 is highly recommended for a better support of the checkpoint technique.

Our immplementation is based on MMDetection3D, so just follow their getting_started and simply run the script: run.sh. Then you will get a basic results of SST after 5~7 hours (depends on your devices).

We only provide the single-stage model here, as for our two-stage models, please follow LiDAR-RCNN. It's also a good choice to apply other powerful second stage detectors to our single-stage SST.

Main results

Single-stage Model (based on PointPillars) on Waymo validation split

#Sweeps Veh_L1 Ped_L1 Cyc_L1
SST_1f 1 73.57 80.01 70.72
SST_3f 3 75.16 83.24 75.96

Note that we train the 3 classes together, so the performance above is a little bit lower than that reported in our paper.

TODO

  • Build SRA block with similar API as Sparse Convolution for more convenient usage.

Acknowlegement

This project is based on the following codebases.

Owner
TuSimple
The Future of Trucking
TuSimple
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021