Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

Overview

🤗 Transformers Wav2Vec2 + PyCTCDecode

Introduction

This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDecode & KenLM ngram as a simple way to boost word error rate (WER).

Included is a file to create an ngram with KenLM as well as a simple evaluation script to compare the results of using Wav2Vec2 with PyCTCDecode + KenLM vs. without using any language model.

Note: The scripts are written to be used on GPU. If you want to use a CPU instead, simply remove all .to("cuda") occurances in eval.py.

Installation

In a first step, one should install KenLM. For Ubuntu, it should be enough to follow the installation steps described here. The installed kenlm folder should be move into this repo for ./create_ngram.py to function correctly. Alternatively, one can also link the lmplz binary file to a lmplz bash command to directly run lmplz instead of ./kenlm/build/bin/lmplz.

Next, some Python dependencies should be installed. Assuming PyTorch is installed, it should be sufficient to run pip install -r requirements.txt.

Run evaluation

Create ngram

In a first step on should create a ngram. E.g. for polish the command would be:

./create_ngram.py --language polish --path_to_ngram polish.arpa

After the language model is created, one should open the file. one should add a </s> The file should have a structure which looks more or less as follows:

\data\        
ngram 1=86586
ngram 2=546387
ngram 3=796581           
ngram 4=843999             
ngram 5=850874              
                                                  
\1-grams:
-5.7532206      <unk>   0
0       <s>     -0.06677356                                                                            
-3.4645514      drugi   -0.2088903
...

Now it is very important also add a </s> token to the n-gram so that it can be correctly loaded. You can simple copy the line:

0 <s> -0.06677356

and change <s> to </s>. When doing this you should also inclease ngram by 1. The new ngram should look as follows:

\data\
ngram 1=86587
ngram 2=546387
ngram 3=796581
ngram 4=843999
ngram 5=850874

\1-grams:
-5.7532206      <unk>   0
0       <s>     -0.06677356
0       </s>     -0.06677356
-3.4645514      drugi   -0.2088903
...

Now the ngram can be correctly used with pyctcdecode

Run eval

Having created the ngram, one can run:

./eval.py --language polish --path_to_ngram polish.arpa

To compare Wav2Vec2 + LM vs. Wav2Vec2 + No LM on polish.

Results

Without tuning any hyperparameters, the following results were obtained:

Comparison of Wav2Vec2 without Language model vs. Wav2Vec2 with `pyctcdecode` + KenLM 5gram.
Fine-tuned Wav2Vec2 models were used and evaluated on MLS datasets.
Take a closer look at `./eval.py` for comparison

==================================================portuguese==================================================
polish - No LM - | WER: 0.3069742867206763 | CER: 0.06054530156286364 | Time: 58.04590034484863
polish - With LM - | WER: 0.2291299753434308 | CER: 0.06211174564528545 | Time: 191.65409898757935

==================================================spanish==================================================
portuguese - No LM - | WER: 0.18208286674132138 | CER: 0.05016682956422096 | Time: 114.61633825302124
portuguese - With LM - | WER: 0.1487761958086706 | CER: 0.04489231909945738 | Time: 429.78511357307434

==================================================polish==================================================
spanish - No LM - | WER: 0.2581272104769545 | CER: 0.0703088156033147 | Time: 147.8634352684021
spanish - With LM - | WER: 0.14927852292116295 | CER: 0.052034208044195916 | Time: 563.0732748508453

It can be seen that the word error rate (WER) is significantly improved when using PyCTCDecode + KenLM. However, the character error rate (CER) does not improve as much or not at all. This is expected since using a language model will make sure that words that are predicted are words that exist in the language's vocabulary. Wav2Vec2 without a LM produces many words that are more or less correct but contain a couple of spelling errors, thus not contributing to a good WER. Those words are likely to be "corrected" by Wav2Vec2 + LM leading to an improved WER. However a Wav2Vec2 already has a good character error rate as its vocabulary is composed of characters meaning that a "word-based" language model doesn't really help in this case.

Overall WER is probably the more important metric though, so it might make a lot of sense to add a LM to Wav2Vec2.

In terms of speed, adding a LM significantly reduces speed. However, the script is not at all optimized for speed so using multi-processing and batched inference would significantly speed up both Wav2Vec2 without LM and with LM.

Owner
Patrick von Platen
Patrick von Platen
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022