Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

Overview

🤗 Transformers Wav2Vec2 + PyCTCDecode

Introduction

This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDecode & KenLM ngram as a simple way to boost word error rate (WER).

Included is a file to create an ngram with KenLM as well as a simple evaluation script to compare the results of using Wav2Vec2 with PyCTCDecode + KenLM vs. without using any language model.

Note: The scripts are written to be used on GPU. If you want to use a CPU instead, simply remove all .to("cuda") occurances in eval.py.

Installation

In a first step, one should install KenLM. For Ubuntu, it should be enough to follow the installation steps described here. The installed kenlm folder should be move into this repo for ./create_ngram.py to function correctly. Alternatively, one can also link the lmplz binary file to a lmplz bash command to directly run lmplz instead of ./kenlm/build/bin/lmplz.

Next, some Python dependencies should be installed. Assuming PyTorch is installed, it should be sufficient to run pip install -r requirements.txt.

Run evaluation

Create ngram

In a first step on should create a ngram. E.g. for polish the command would be:

./create_ngram.py --language polish --path_to_ngram polish.arpa

After the language model is created, one should open the file. one should add a </s> The file should have a structure which looks more or less as follows:

\data\        
ngram 1=86586
ngram 2=546387
ngram 3=796581           
ngram 4=843999             
ngram 5=850874              
                                                  
\1-grams:
-5.7532206      <unk>   0
0       <s>     -0.06677356                                                                            
-3.4645514      drugi   -0.2088903
...

Now it is very important also add a </s> token to the n-gram so that it can be correctly loaded. You can simple copy the line:

0 <s> -0.06677356

and change <s> to </s>. When doing this you should also inclease ngram by 1. The new ngram should look as follows:

\data\
ngram 1=86587
ngram 2=546387
ngram 3=796581
ngram 4=843999
ngram 5=850874

\1-grams:
-5.7532206      <unk>   0
0       <s>     -0.06677356
0       </s>     -0.06677356
-3.4645514      drugi   -0.2088903
...

Now the ngram can be correctly used with pyctcdecode

Run eval

Having created the ngram, one can run:

./eval.py --language polish --path_to_ngram polish.arpa

To compare Wav2Vec2 + LM vs. Wav2Vec2 + No LM on polish.

Results

Without tuning any hyperparameters, the following results were obtained:

Comparison of Wav2Vec2 without Language model vs. Wav2Vec2 with `pyctcdecode` + KenLM 5gram.
Fine-tuned Wav2Vec2 models were used and evaluated on MLS datasets.
Take a closer look at `./eval.py` for comparison

==================================================portuguese==================================================
polish - No LM - | WER: 0.3069742867206763 | CER: 0.06054530156286364 | Time: 58.04590034484863
polish - With LM - | WER: 0.2291299753434308 | CER: 0.06211174564528545 | Time: 191.65409898757935

==================================================spanish==================================================
portuguese - No LM - | WER: 0.18208286674132138 | CER: 0.05016682956422096 | Time: 114.61633825302124
portuguese - With LM - | WER: 0.1487761958086706 | CER: 0.04489231909945738 | Time: 429.78511357307434

==================================================polish==================================================
spanish - No LM - | WER: 0.2581272104769545 | CER: 0.0703088156033147 | Time: 147.8634352684021
spanish - With LM - | WER: 0.14927852292116295 | CER: 0.052034208044195916 | Time: 563.0732748508453

It can be seen that the word error rate (WER) is significantly improved when using PyCTCDecode + KenLM. However, the character error rate (CER) does not improve as much or not at all. This is expected since using a language model will make sure that words that are predicted are words that exist in the language's vocabulary. Wav2Vec2 without a LM produces many words that are more or less correct but contain a couple of spelling errors, thus not contributing to a good WER. Those words are likely to be "corrected" by Wav2Vec2 + LM leading to an improved WER. However a Wav2Vec2 already has a good character error rate as its vocabulary is composed of characters meaning that a "word-based" language model doesn't really help in this case.

Overall WER is probably the more important metric though, so it might make a lot of sense to add a LM to Wav2Vec2.

In terms of speed, adding a LM significantly reduces speed. However, the script is not at all optimized for speed so using multi-processing and batched inference would significantly speed up both Wav2Vec2 without LM and with LM.

Owner
Patrick von Platen
Patrick von Platen
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022