[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

Overview

MonoRUn

MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*, Zhong Gao, Lu Xiong. (*Corresponding author: Wei Tian.)

This repository is the PyTorch implementation for MonoRUn. The codes are based on MMDetection and MMDetection3D, although we use our own data formats. The PnP C++ codes are modified from PVNet.

demo

Installation

Please refer to INSTALL.md.

Data preparation

Download the official KITTI 3D object dataset, including left color images, calibration files and training labels.

Download the train/val/test image lists [Google Drive | Baidu Pan, password: cj4u]. For training with LiDAR supervision, download the preprocessed object coordinate maps [Google Drive | Baidu Pan, password: fp3h].

Extract the downloaded archives according to the following folder structure. It is recommended to symlink the dataset root to $MonoRUn_ROOT/data. If your folder structure is different, you may need to change the corresponding paths in config files.

$MonoRUn_ROOT
├── configs
├── monorun
├── tools
├── data
│   ├── kitti
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   └── test_list.txt
│   │   └── training
│   │       ├── calib
│   │       ├── image_2
│   │       ├── label_2
│   │       ├── obj_crd
│   │       ├── mono3dsplit_train_list.txt
│   │       ├── mono3dsplit_val_list.txt
│   │       └── trainval_list.txt

Run the preparation script to generate image metas:

cd $MonoRUn_ROOT
python tools/prepare_kitti.py

Train

cd $MonoRUn_ROOT

To train without LiDAR supervision:

python train.py configs/kitti_multiclass.py --gpu-ids 0 1

where --gpu-ids 0 1 specifies the GPU IDs. In the paper we use two GPUs for distributed training. The number of GPUs affects the mini-batch size. You may change the samples_per_gpu option in the config file to vary the number of images per GPU. If you encounter out of memory issue, add the argument --seed 0 --deterministic to save GPU memory.

To train with LiDAR supervision:

python train.py configs/kitti_multiclass_lidar_supv.py --gpu-ids 0 1

To view other training options:

python train.py -h

By default, logs and checkpoints will be saved to $MonoRUn_ROOT/work_dirs. You can run TensorBoard to plot the logs:

tensorboard --logdir $MonoRUn_ROOT/work_dirs

The above configs use the 3712-image split for training and the other split for validating. If you want to train on the full training set (train-val), use the config files with _trainval postfix.

Test

You can download the pretrained models:

  • kitti_multiclass.pth [Google Drive | Baidu Pan, password: 6bih] trained on KITTI training split
  • kitti_multiclass_lidar_supv.pth [Google Drive | Baidu Pan, password: nmdb] trained on KITTI training split
  • kitti_multiclass_lidar_supv_trainval.pth [Google Drive | Baidu Pan, password: hg2r] trained on KITTI train-val

To test and evaluate on the validation set using config at $CONFIG_PATH and checkpoint at $CPT_PATH:

python test.py $CONFIG_PATH $CPT_PATH --val-set --gpu-ids 0

To test on the test set and save detection results to $RESULT_DIR:

python test.py $CONFIG_PATH $CPT_PATH --result-dir $RESULT_DIR --gpu-ids 0

You can append the argument --show-dir $SHOW_DIR to save visualized results.

To view other testing options:

python test.py -h

Note: the training and testing scripts in the root directory are wrappers for the original scripts taken from MMDetection, which can be found in $MonoRUn_ROOT/tools. For advanced usage, please refer to the official MMDetection docs.

Demo

We provide a demo script to perform inference on images in a directory and save the visualized results. Example:

python demo/infer_imgs.py $KITTI_RAW_DIR/2011_09_30/2011_09_30_drive_0027_sync/image_02/data configs/kitti_multiclass_lidar_supv_trainval.py checkpoints/kitti_multiclass_lidar_supv_trainval.pth --calib demo/calib.csv --show-dir show/2011_09_30_drive_0027

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{monorun2021, 
  author = {Hansheng Chen and Yuyao Huang and Wei Tian and Zhong Gao and Lu Xiong}, 
  title = {MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation}, 
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
  year = {2021}
}
Owner
同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University)
同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University)
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022