Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

Related tags

Deep Learningcorda
Overview

CorDA

Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation alt text

Prerequisite

Please create and activate the following conda envrionment

# It may take several minutes for conda to solve the environment
conda env create -f environment.yml
conda activate corda 

Code was tested on a V100 with 16G Memory.

Train a CorDA model

# Train for the SYNTHIA2Cityscapes task
bash run_synthia_stereo.sh
# Train for the GTA2Cityscapes task
bash run_gta.sh

Test the trained model

bash shells/eval_syn2city.sh
bash shells/eval_gta2city.sh

Pre-trained models are provided (Google Drive). Please put them in ./checkpoint.

  • The provided SYNTHIA2Cityscapes model achieves 56.3 mIoU (16 classes) at the end of the training.
  • The provided GTA2Cityscapes model achieves 57.7 mIoU (19 classes) at the end of the training.

Reported Results on SYNTHIA2Cityscapes

Method mIoU*(13) mIoU(16)
CBST 48.9 42.6
FDA 52.5 -
DADA 49.8 42.6
DACS 54.8 48.3
CorDA 62.8 55.0

Citation

Please cite our work if you find it useful.

@article{wang2021domain,
  title={Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation},
  author={Wang, Qin and Dai, Dengxin and Hoyer, Lukas and Fink, Olga and Van Gool, Luc},
  journal={arXiv preprint arXiv:2104.13613},
  year={2021}
}

Acknowledgement

  • DACS is used as our codebase and our DA baseline official
  • SFSU as the source of stereo Cityscapes depth estimation Official

Data links

For questions regarding the code, please contact [email protected] .

Comments
  • Training on a custom dataset without ground truth label

    Training on a custom dataset without ground truth label

    From what I understand after reading your paper, you do not need ground truth label data on the target domain to train the pseudo labels. However, when I look at cityscapes_loader, it seems I need to supply the ground truth seg maps as well.

    I am trying to train the network on a custom dataset (that only depth maps, and ground truth seg map only on the source domain), but it looks I cannot get away without providing it. Do you have any thoughts on this?

    opened by chophilip21 6
  • Coufusion about the 'depth' of cityscapes

    Coufusion about the 'depth' of cityscapes

    Hello, nice work but i meet some question.

    in 'data/cityscapes_loader.py' line 181-183:

    depth = cv2.imread(depth_path, flags=cv2.IMREAD_ANYDEPTH).astype(np.float32) / 256. + 1. if depth.shape != lbl.shape: depth = cv2.resize(depth, lbl.shape[::-1], interpolation=cv2.INTER_NEAREST) Monocular depth: in disparity form 0 - 65535

    (1) Why the depth is calculated from x/256+1
    (2) is it the depth or the disparity ? In the official doc of cityscapes, it say disparity = (x-1)/256

    Thank you!

    opened by ganyz 6
  • gta2city

    gta2city

    When I revisited the performance of your GTA2City, I found that the MIOU could only reach about 54.8 after 250,000 iterations. I didn't change anything except the 10.2 version of CUDA. Could you please provide the training log of your GTA2City? Thanks a lot!!

    opened by xiaoachen98 6
  • Question about the pretrained parameters of backbone

    Question about the pretrained parameters of backbone

    Thanks for sharing the code, and it brings the amazing improvement for this filed.

    I notice that you have used backbone with parameters pretrained on MSCOCO which is the same with DACS, and have you tried backbone pretrained on ImageNet? If yes, could you please provide the corresponding results?

    opened by super233 4
  • About intrinsics used in GTA depth estimation

    About intrinsics used in GTA depth estimation

    Thanks a lot for your fantastic work. When I followed your depth estimation mentioned in issue#7, I went to the https://playing-for-benchmarks.org. However,its camera calibration doesn't include intrinsic matrix directly, which is needed in Monodepth2 depth estimation. Would you kindly share the intrinsic of GTA you used in depth estimation? Or may I know a way to convert GTA's projection matrix to intrinsic matrix?

    opened by Ichinose0code 2
  • Why does the class Train have 0 mIoU, What may could happen

    Why does the class Train have 0 mIoU, What may could happen

    I download your pretrained model, and start demo But I find train iou 0.0

    (yy_corda) [email protected]:/media/ailab/data/yy/corda$ bash shells/eval_gta2city.sh
    ./checkpoint/gta
    Found 500 val images
    Evaluating, found 500 batches.
    100 processed
    200 processed
    300 processed
    400 processed
    500 processed
    class  0 road         IU 94.81
    class  1 sidewalk     IU 62.18
    class  2 building     IU 88.03
    class  3 wall         IU 33.09
    class  4 fence        IU 43.51
    class  5 pole         IU 39.93
    class  6 traffic_light IU 49.46
    class  7 traffic_sign IU 54.68
    class  8 vegetation   IU 88.01
    class  9 terrain      IU 47.67
    class 10 sky          IU 89.22
    class 11 person       IU 68.22
    class 12 rider        IU 39.21
    class 13 car          IU 90.25
    class 14 truck        IU 51.43
    class 15 bus          IU 58.37
    class 16 train        IU 0.00
    class 17 motorcycle   IU 40.38
    class 18 bicycle      IU 57.42
    meanIOU: 0.5767768805758403
    

    I train my model on it, and test eval_syn2city.py. Here are 3 classes Iou 0.0 because missing classed in source domain. but I download pretrained model ,and run eval_gta2city.sh still miss one class train. So, I want to know why. Is it may train class didn't appear city datasets? So it's IOU is 0.

    opened by yuheyuan 2
  • How to obtain your depth datasets?

    How to obtain your depth datasets?

    Hi, thanks for your great work!

    It would be great if you can elaborate more on how you obtain the monocular depth estimation.

    I understand that you've uploaded the dataset, but it would be really helpful if I know exactly how you've done it.

    From your paper, in the ablation study part: "We would like to highlight that for both stereo and monocular depth estimations, only stereo pairs or image sequences from the same dataset are used to train and generate the pseudo depth estimation model. As no data from external datasets is used, and stereo pairs and image sequences are relatively easy to obtain, our proposal of using self-supervised depth have the potential to be effectively realized in real-world applications."

    So I image you get your monocular depth pseudo ground truth by:

    1. Downloading target domain videos (here Cityscapes. Btw, where do you get Cityscapes videos?)
    2. Train a Monodepth2 model on those videos (for how long?)
    3. Use the model to get pseudo ground truth Then repeat to the source domain (GTA 5 or Synthia)

    Am I getting it right? And is there any more important points you want to highlight when calculating such depth labels?

    Regards, Tu

    opened by tudragon154203 2
  • How to continue train?

    How to continue train?

    when I use script llike

    CUDA_VISIBLE_DEVICES=0 python3 -u trainUDA_gta.py --config ./configs/configUDA_gta2city.json --name UDA-gta --resume /saved/DeepLabv2-depth-gtamono-cityscapestereo/05-03_02-13-UDA-gta/checkpoint-iter95000.pth | tee ./gta-corda.log

    It would run again but the new checkpoint would be saved.

    opened by ygjwd12345 2
  • Warning:optimizer contains a parameter group with duplicate parameters

    Warning:optimizer contains a parameter group with duplicate parameters

    I follow you code, and train a model. But it results may not meet the need.

    I eval the model you share .

    bash shells/eval_syn2city.sh
    

    your share model. in syn2city : 19 classes : meanIout: 0.4771 I train the model: in syn2city : 19 classes : meanIout: only: 0.46.7

    in the train. I find the warning, So I want to know if it may cause the result drop.

    /home/ailab/anaconda3/envs/yy_CORDA/lib/python3.7/site-packages/torch/optim/sgd.py:68: UserWarning: optimizer contains a parameter group with duplicate parameters; in future, this will cause an error; see github.com/pytorch/pytorch/issues/40967 for more information
      super(SGD, self).__init__(params, defaults)
    D_init tensor(134.8489, device='cuda:0', grad_fn=<DivBackward0>) D tensor(134.5171, device='cuda:0', grad_fn=<DivBackward0>)
    
    opened by yuheyuan 1
  • May deeplabv2_synthia.py have extra space symbol

    May deeplabv2_synthia.py have extra space symbol

    if the forward code, return out ,an extra space symbol

       def forward(self, x):
            out = self.conv2d_list[0](x)
            for i in range(len(self.conv2d_list)-1):
                out += self.conv2d_list[i+1](x)
                return out
    

    this is the code in your code

    class Classifier_Module(nn.Module):
    
        def __init__(self, dilation_series, padding_series, num_classes):
            super(Classifier_Module, self).__init__()
            self.conv2d_list = nn.ModuleList()
            for dilation, padding in zip(dilation_series, padding_series):
                self.conv2d_list.append(nn.Conv2d(256, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias = True))
    
            for m in self.conv2d_list:
                m.weight.data.normal_(0, 0.01)
    
        def forward(self, x):
            out = self.conv2d_list[0](x)
            for i in range(len(self.conv2d_list)-1):
                out += self.conv2d_list[i+1](x)
                return out
    
    

    I this this forward is possible.beaceuse your code, use list contain four elements,if return out have space, this may do only twice without fourth

       def forward(self, x):
            out = self.conv2d_list[0](x)
            for i in range(len(self.conv2d_list)-1):
                out += self.conv2d_list[i+1](x)
            return out
    
       self.__make_pred_layer(Classifier_Module,[6,12,18,24],[6, 12,18, 24],NUM_OUTPUT[task]
    
       def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
            return block(dilation_series,padding_series,num_classes)
    
    opened by yuheyuan 1
  • checkpoints links fail

    checkpoints links fail

    I can't download the checkpoints file from your links, when click into the google drive, The file size is shown to be 2GB, but it was only 0B when downloaded

    opened by xiaoachen98 0
Owner
Qin Wang
PhD student @ ETH Zürich
Qin Wang
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022