Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

Related tags

Deep Learningcorda
Overview

CorDA

Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation alt text

Prerequisite

Please create and activate the following conda envrionment

# It may take several minutes for conda to solve the environment
conda env create -f environment.yml
conda activate corda 

Code was tested on a V100 with 16G Memory.

Train a CorDA model

# Train for the SYNTHIA2Cityscapes task
bash run_synthia_stereo.sh
# Train for the GTA2Cityscapes task
bash run_gta.sh

Test the trained model

bash shells/eval_syn2city.sh
bash shells/eval_gta2city.sh

Pre-trained models are provided (Google Drive). Please put them in ./checkpoint.

  • The provided SYNTHIA2Cityscapes model achieves 56.3 mIoU (16 classes) at the end of the training.
  • The provided GTA2Cityscapes model achieves 57.7 mIoU (19 classes) at the end of the training.

Reported Results on SYNTHIA2Cityscapes

Method mIoU*(13) mIoU(16)
CBST 48.9 42.6
FDA 52.5 -
DADA 49.8 42.6
DACS 54.8 48.3
CorDA 62.8 55.0

Citation

Please cite our work if you find it useful.

@article{wang2021domain,
  title={Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation},
  author={Wang, Qin and Dai, Dengxin and Hoyer, Lukas and Fink, Olga and Van Gool, Luc},
  journal={arXiv preprint arXiv:2104.13613},
  year={2021}
}

Acknowledgement

  • DACS is used as our codebase and our DA baseline official
  • SFSU as the source of stereo Cityscapes depth estimation Official

Data links

For questions regarding the code, please contact [email protected] .

Comments
  • Training on a custom dataset without ground truth label

    Training on a custom dataset without ground truth label

    From what I understand after reading your paper, you do not need ground truth label data on the target domain to train the pseudo labels. However, when I look at cityscapes_loader, it seems I need to supply the ground truth seg maps as well.

    I am trying to train the network on a custom dataset (that only depth maps, and ground truth seg map only on the source domain), but it looks I cannot get away without providing it. Do you have any thoughts on this?

    opened by chophilip21 6
  • Coufusion about the 'depth' of cityscapes

    Coufusion about the 'depth' of cityscapes

    Hello, nice work but i meet some question.

    in 'data/cityscapes_loader.py' line 181-183:

    depth = cv2.imread(depth_path, flags=cv2.IMREAD_ANYDEPTH).astype(np.float32) / 256. + 1. if depth.shape != lbl.shape: depth = cv2.resize(depth, lbl.shape[::-1], interpolation=cv2.INTER_NEAREST) Monocular depth: in disparity form 0 - 65535

    (1) Why the depth is calculated from x/256+1
    (2) is it the depth or the disparity ? In the official doc of cityscapes, it say disparity = (x-1)/256

    Thank you!

    opened by ganyz 6
  • gta2city

    gta2city

    When I revisited the performance of your GTA2City, I found that the MIOU could only reach about 54.8 after 250,000 iterations. I didn't change anything except the 10.2 version of CUDA. Could you please provide the training log of your GTA2City? Thanks a lot!!

    opened by xiaoachen98 6
  • Question about the pretrained parameters of backbone

    Question about the pretrained parameters of backbone

    Thanks for sharing the code, and it brings the amazing improvement for this filed.

    I notice that you have used backbone with parameters pretrained on MSCOCO which is the same with DACS, and have you tried backbone pretrained on ImageNet? If yes, could you please provide the corresponding results?

    opened by super233 4
  • About intrinsics used in GTA depth estimation

    About intrinsics used in GTA depth estimation

    Thanks a lot for your fantastic work. When I followed your depth estimation mentioned in issue#7, I went to the https://playing-for-benchmarks.org. However,its camera calibration doesn't include intrinsic matrix directly, which is needed in Monodepth2 depth estimation. Would you kindly share the intrinsic of GTA you used in depth estimation? Or may I know a way to convert GTA's projection matrix to intrinsic matrix?

    opened by Ichinose0code 2
  • Why does the class Train have 0 mIoU, What may could happen

    Why does the class Train have 0 mIoU, What may could happen

    I download your pretrained model, and start demo But I find train iou 0.0

    (yy_corda) [email protected]:/media/ailab/data/yy/corda$ bash shells/eval_gta2city.sh
    ./checkpoint/gta
    Found 500 val images
    Evaluating, found 500 batches.
    100 processed
    200 processed
    300 processed
    400 processed
    500 processed
    class  0 road         IU 94.81
    class  1 sidewalk     IU 62.18
    class  2 building     IU 88.03
    class  3 wall         IU 33.09
    class  4 fence        IU 43.51
    class  5 pole         IU 39.93
    class  6 traffic_light IU 49.46
    class  7 traffic_sign IU 54.68
    class  8 vegetation   IU 88.01
    class  9 terrain      IU 47.67
    class 10 sky          IU 89.22
    class 11 person       IU 68.22
    class 12 rider        IU 39.21
    class 13 car          IU 90.25
    class 14 truck        IU 51.43
    class 15 bus          IU 58.37
    class 16 train        IU 0.00
    class 17 motorcycle   IU 40.38
    class 18 bicycle      IU 57.42
    meanIOU: 0.5767768805758403
    

    I train my model on it, and test eval_syn2city.py. Here are 3 classes Iou 0.0 because missing classed in source domain. but I download pretrained model ,and run eval_gta2city.sh still miss one class train. So, I want to know why. Is it may train class didn't appear city datasets? So it's IOU is 0.

    opened by yuheyuan 2
  • How to obtain your depth datasets?

    How to obtain your depth datasets?

    Hi, thanks for your great work!

    It would be great if you can elaborate more on how you obtain the monocular depth estimation.

    I understand that you've uploaded the dataset, but it would be really helpful if I know exactly how you've done it.

    From your paper, in the ablation study part: "We would like to highlight that for both stereo and monocular depth estimations, only stereo pairs or image sequences from the same dataset are used to train and generate the pseudo depth estimation model. As no data from external datasets is used, and stereo pairs and image sequences are relatively easy to obtain, our proposal of using self-supervised depth have the potential to be effectively realized in real-world applications."

    So I image you get your monocular depth pseudo ground truth by:

    1. Downloading target domain videos (here Cityscapes. Btw, where do you get Cityscapes videos?)
    2. Train a Monodepth2 model on those videos (for how long?)
    3. Use the model to get pseudo ground truth Then repeat to the source domain (GTA 5 or Synthia)

    Am I getting it right? And is there any more important points you want to highlight when calculating such depth labels?

    Regards, Tu

    opened by tudragon154203 2
  • How to continue train?

    How to continue train?

    when I use script llike

    CUDA_VISIBLE_DEVICES=0 python3 -u trainUDA_gta.py --config ./configs/configUDA_gta2city.json --name UDA-gta --resume /saved/DeepLabv2-depth-gtamono-cityscapestereo/05-03_02-13-UDA-gta/checkpoint-iter95000.pth | tee ./gta-corda.log

    It would run again but the new checkpoint would be saved.

    opened by ygjwd12345 2
  • Warning:optimizer contains a parameter group with duplicate parameters

    Warning:optimizer contains a parameter group with duplicate parameters

    I follow you code, and train a model. But it results may not meet the need.

    I eval the model you share .

    bash shells/eval_syn2city.sh
    

    your share model. in syn2city : 19 classes : meanIout: 0.4771 I train the model: in syn2city : 19 classes : meanIout: only: 0.46.7

    in the train. I find the warning, So I want to know if it may cause the result drop.

    /home/ailab/anaconda3/envs/yy_CORDA/lib/python3.7/site-packages/torch/optim/sgd.py:68: UserWarning: optimizer contains a parameter group with duplicate parameters; in future, this will cause an error; see github.com/pytorch/pytorch/issues/40967 for more information
      super(SGD, self).__init__(params, defaults)
    D_init tensor(134.8489, device='cuda:0', grad_fn=<DivBackward0>) D tensor(134.5171, device='cuda:0', grad_fn=<DivBackward0>)
    
    opened by yuheyuan 1
  • May deeplabv2_synthia.py have extra space symbol

    May deeplabv2_synthia.py have extra space symbol

    if the forward code, return out ,an extra space symbol

       def forward(self, x):
            out = self.conv2d_list[0](x)
            for i in range(len(self.conv2d_list)-1):
                out += self.conv2d_list[i+1](x)
                return out
    

    this is the code in your code

    class Classifier_Module(nn.Module):
    
        def __init__(self, dilation_series, padding_series, num_classes):
            super(Classifier_Module, self).__init__()
            self.conv2d_list = nn.ModuleList()
            for dilation, padding in zip(dilation_series, padding_series):
                self.conv2d_list.append(nn.Conv2d(256, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias = True))
    
            for m in self.conv2d_list:
                m.weight.data.normal_(0, 0.01)
    
        def forward(self, x):
            out = self.conv2d_list[0](x)
            for i in range(len(self.conv2d_list)-1):
                out += self.conv2d_list[i+1](x)
                return out
    
    

    I this this forward is possible.beaceuse your code, use list contain four elements,if return out have space, this may do only twice without fourth

       def forward(self, x):
            out = self.conv2d_list[0](x)
            for i in range(len(self.conv2d_list)-1):
                out += self.conv2d_list[i+1](x)
            return out
    
       self.__make_pred_layer(Classifier_Module,[6,12,18,24],[6, 12,18, 24],NUM_OUTPUT[task]
    
       def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
            return block(dilation_series,padding_series,num_classes)
    
    opened by yuheyuan 1
  • checkpoints links fail

    checkpoints links fail

    I can't download the checkpoints file from your links, when click into the google drive, The file size is shown to be 2GB, but it was only 0B when downloaded

    opened by xiaoachen98 0
Owner
Qin Wang
PhD student @ ETH Zürich
Qin Wang
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022