Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Overview

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

This is the repository containing code used for the Unleashing Transformers paper.

front_page_sample

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Sam Bond-Taylor*, Peter Hessey*, Hiroshi Sasaki, Toby P. Breckon, Chris G. Willcocks
* Authors contributed equally

Abstract

Whilst diffusion probabilistic models can generate high quality image content, key limitations remain in terms of both generating high-resolution imagery and their associated high computational requirements. Recent Vector-Quantized image models have overcome this limitation of image resolution but are prohibitively slow and unidirectional as they generate tokens via element-wise autoregressive sampling from the prior. By contrast, in this paper we propose a novel discrete diffusion probabilistic model prior which enables parallel prediction of Vector-Quantized tokens by using an unconstrained Transformer architecture as the backbone. During training, tokens are randomly masked in an order-agnostic manner and the Transformer learns to predict the original tokens. This parallelism of Vector-Quantized token prediction in turn facilitates unconditional generation of globally consistent high-resolution and diverse imagery at a fraction of the computational expense. In this manner, we can generate image resolutions exceeding that of the original training set samples whilst additionally provisioning per-image likelihood estimates (in a departure from generative adversarial approaches). Our approach achieves state-of-the-art results in terms of Density (LSUN Bedroom: 1.51; LSUN Churches: 1.12; FFHQ: 1.20) and Coverage (LSUN Bedroom: 0.83; LSUN Churches: 0.73; FFHQ: 0.80), and performs competitively on FID (LSUN Bedroom: 3.64; LSUN Churches: 4.07; FFHQ: 6.11) whilst offering advantages in terms of both computation and reduced training set requirements.

front_page_sample

arXiv | BibTeX | Project Page

Table of Contents

Setup

Currently, a dedicated graphics card capable of running CUDA is required to run the code used in this repository. All models used for the paper were trained on a single NVIDIA RTX 2080 Ti using CUDA version 11.1.

Set up conda environment

To run the code in this repository we recommend you set up a virtual environment using conda. To get set up quickly, use miniconda.

Run the following command to clone this repo using git and create and activate the conda environment unleashing:

git clone https://github.com/samb-t/unleashing-transformers.git && cd unleashing-transformers
conda create --name unleashing --file requirements.yml
conda activate unleashing  

You should now be able to run all commands available in the following sections.

Dataset Setup

To configure the default paths for datasets used for training the models in this repo, simply edit datasets.yaml - changing the paths attribute of each dataset you wish to use to the path where your dataset is saved locally.

Dataset Official Link Academic Torrents Link
FFHQ Official FFHQ Academic Torrents FFHQ
LSUN Official LSUN Academic Torrents LSUN

Commands

This section contains details on the basic commands for training and calculating metrics on the Absorbing Diffusion models. All training was completed on a single NVIDIA RTX 2080 Ti and these commands presume the same level of hardware. If your GPU has less VRAM than a 2080 Ti then you may need to train using smaller batch sizes and/or smaller models than the defaults.

For a detailed list of all commands options, including altering model architecture, logging output, checkpointing frequency, etc., please add the --help flag to the end of your command.

All commands should be run from the head directory, i.e. the directory containing the README file.

Set up visdom server

Before training, you'll need to start a visdom server in order to easily view model output (loss graphs, reconstructions, etc.). To do this, run the following command:

visdom -p 8097

This starts a visdom server listening on port 8097, which is the default used by our models. If you navigate to localhost:8097 you will see be able to view the live server.

To specify a different port when training any models, use the --visdom_port flag.

Train a Vector-Quantized autoencoder on LSUN Churches

The following command starts the training for a VQGAN on LSUN Churches:

python3 train_vqgan.py --dataset churches --log_dir vqae_churches --amp --batch_size 4

As specified with the --log_dir flag, results will be saved to the directory logs/vqae_churches. This includes all logs, model checkpoints and saved outputs. The --amp flag enables mixed-precision training, necessary for training using a batch size of 4 (the default) on a single 2080 Ti.

Train an Absorbing Diffusion sampler using the above Vector-Quantized autoencoder

After training the VQ model using the previous command, you'll be able to run the following commands to train a discrete diffusion prior on the latent space of the Vector-Quantized model:

python3 train_sampler.py --sampler absorbing --dataset churches --log_dir absorbing_churches --ae_load_dir vqae_churches --ae_load_step 2200000 --amp 

The sampler needs to load the trained Vector-Quantized autoencoder in order to generate the latents it will use as for training (and validation). Latents are cached after the first time this is run to speed up training.

Experiments on trained Absorbing Diffusion Sampler

This section contains simple template commands for calculating metrics and other experiments on trained samplers.

Calculate FID

python experiments/calc_FID.py --sampler absorbing --dataset churches --log_dir FID_log --ae_load_dir vqae_churches --ae_load_step 2200000  --load_dir absorbing_churches --load_step 2000000 --n_samples 50000

Calculate PRDC Scores

python experiments/calc_PRDC.py --sampler absorbing --dataset churches --log_dir PRDC_log --ae_load_dir vqae_churches --ae_load_step 2200000 --load_dir absorbing_churches --load_step 2000000 --n_samples 50000

Calculate ELBO Estimates

The following command fine-tunes a Vector-Quantized autoencoder to compute reconstruction likelihood, and then evaluates the ELBO of the overall model.

python experiments/calc_approximate_ELBO.py --sampler absorbing --dataset ffhq --log_dir nll_churches --ae_load_dir vqae_churches --ae_load_step 2200000 --load_dir absorbing_churches --load_step 2000000 --steps_per_eval 5000 --train_steps 10000

NOTE: the --steps_per_eval flag is required for this script, as a validation dataset is used.

Find Nearest Neighbours

Produces a random batch of samples and finds the nearest neighbour images in the training set based on LPIPS distance.

python experiments/calc_nearest_neighbours.py --sampler absorbing --dataset churches --log_dir nearest_neighbours_churches --ae_load_dir vqae_churches --ae_load_step 2200000 --load_dir absorbing_churches --load_step 2000000

Generate Higher Resolution Samples

By applying the absorbing diffusion model to various locations at once and aggregating denoising probabilities, larger samples than observed during training are able to be generated (see Figures 4 and 11).

python experiments/generate_big_samples.py --sampler absorbing --dataset churches --log_dir big_samples_churches --ae_load_dir vqae_churches --ae_load_step 2200000 load_dir absorbing_churches --load_step 2000000 --shape 32 16

Use the --shape flag to specify the dimensions of the latents to generate.

Related Work

The following papers were particularly helpful when developing this work:

BibTeX

@article{bond2021unleashing,
  title     = {Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes},
  author    = {Sam Bond-Taylor and Peter Hessey and Hiroshi Sasaki and Toby P. Breckon and Chris G. Willcocks},
  journal   = {arXiv preprint arXiv:2111.12701},
  year      = {2021}
}
Owner
Sam Bond-Taylor
PhD student at Durham University interested in deep generative modelling.
Sam Bond-Taylor
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022