Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Overview

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

This is the repository containing code used for the Unleashing Transformers paper.

front_page_sample

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Sam Bond-Taylor*, Peter Hessey*, Hiroshi Sasaki, Toby P. Breckon, Chris G. Willcocks
* Authors contributed equally

Abstract

Whilst diffusion probabilistic models can generate high quality image content, key limitations remain in terms of both generating high-resolution imagery and their associated high computational requirements. Recent Vector-Quantized image models have overcome this limitation of image resolution but are prohibitively slow and unidirectional as they generate tokens via element-wise autoregressive sampling from the prior. By contrast, in this paper we propose a novel discrete diffusion probabilistic model prior which enables parallel prediction of Vector-Quantized tokens by using an unconstrained Transformer architecture as the backbone. During training, tokens are randomly masked in an order-agnostic manner and the Transformer learns to predict the original tokens. This parallelism of Vector-Quantized token prediction in turn facilitates unconditional generation of globally consistent high-resolution and diverse imagery at a fraction of the computational expense. In this manner, we can generate image resolutions exceeding that of the original training set samples whilst additionally provisioning per-image likelihood estimates (in a departure from generative adversarial approaches). Our approach achieves state-of-the-art results in terms of Density (LSUN Bedroom: 1.51; LSUN Churches: 1.12; FFHQ: 1.20) and Coverage (LSUN Bedroom: 0.83; LSUN Churches: 0.73; FFHQ: 0.80), and performs competitively on FID (LSUN Bedroom: 3.64; LSUN Churches: 4.07; FFHQ: 6.11) whilst offering advantages in terms of both computation and reduced training set requirements.

front_page_sample

arXiv | BibTeX | Project Page

Table of Contents

Setup

Currently, a dedicated graphics card capable of running CUDA is required to run the code used in this repository. All models used for the paper were trained on a single NVIDIA RTX 2080 Ti using CUDA version 11.1.

Set up conda environment

To run the code in this repository we recommend you set up a virtual environment using conda. To get set up quickly, use miniconda.

Run the following command to clone this repo using git and create and activate the conda environment unleashing:

git clone https://github.com/samb-t/unleashing-transformers.git && cd unleashing-transformers
conda create --name unleashing --file requirements.yml
conda activate unleashing  

You should now be able to run all commands available in the following sections.

Dataset Setup

To configure the default paths for datasets used for training the models in this repo, simply edit datasets.yaml - changing the paths attribute of each dataset you wish to use to the path where your dataset is saved locally.

Dataset Official Link Academic Torrents Link
FFHQ Official FFHQ Academic Torrents FFHQ
LSUN Official LSUN Academic Torrents LSUN

Commands

This section contains details on the basic commands for training and calculating metrics on the Absorbing Diffusion models. All training was completed on a single NVIDIA RTX 2080 Ti and these commands presume the same level of hardware. If your GPU has less VRAM than a 2080 Ti then you may need to train using smaller batch sizes and/or smaller models than the defaults.

For a detailed list of all commands options, including altering model architecture, logging output, checkpointing frequency, etc., please add the --help flag to the end of your command.

All commands should be run from the head directory, i.e. the directory containing the README file.

Set up visdom server

Before training, you'll need to start a visdom server in order to easily view model output (loss graphs, reconstructions, etc.). To do this, run the following command:

visdom -p 8097

This starts a visdom server listening on port 8097, which is the default used by our models. If you navigate to localhost:8097 you will see be able to view the live server.

To specify a different port when training any models, use the --visdom_port flag.

Train a Vector-Quantized autoencoder on LSUN Churches

The following command starts the training for a VQGAN on LSUN Churches:

python3 train_vqgan.py --dataset churches --log_dir vqae_churches --amp --batch_size 4

As specified with the --log_dir flag, results will be saved to the directory logs/vqae_churches. This includes all logs, model checkpoints and saved outputs. The --amp flag enables mixed-precision training, necessary for training using a batch size of 4 (the default) on a single 2080 Ti.

Train an Absorbing Diffusion sampler using the above Vector-Quantized autoencoder

After training the VQ model using the previous command, you'll be able to run the following commands to train a discrete diffusion prior on the latent space of the Vector-Quantized model:

python3 train_sampler.py --sampler absorbing --dataset churches --log_dir absorbing_churches --ae_load_dir vqae_churches --ae_load_step 2200000 --amp 

The sampler needs to load the trained Vector-Quantized autoencoder in order to generate the latents it will use as for training (and validation). Latents are cached after the first time this is run to speed up training.

Experiments on trained Absorbing Diffusion Sampler

This section contains simple template commands for calculating metrics and other experiments on trained samplers.

Calculate FID

python experiments/calc_FID.py --sampler absorbing --dataset churches --log_dir FID_log --ae_load_dir vqae_churches --ae_load_step 2200000  --load_dir absorbing_churches --load_step 2000000 --n_samples 50000

Calculate PRDC Scores

python experiments/calc_PRDC.py --sampler absorbing --dataset churches --log_dir PRDC_log --ae_load_dir vqae_churches --ae_load_step 2200000 --load_dir absorbing_churches --load_step 2000000 --n_samples 50000

Calculate ELBO Estimates

The following command fine-tunes a Vector-Quantized autoencoder to compute reconstruction likelihood, and then evaluates the ELBO of the overall model.

python experiments/calc_approximate_ELBO.py --sampler absorbing --dataset ffhq --log_dir nll_churches --ae_load_dir vqae_churches --ae_load_step 2200000 --load_dir absorbing_churches --load_step 2000000 --steps_per_eval 5000 --train_steps 10000

NOTE: the --steps_per_eval flag is required for this script, as a validation dataset is used.

Find Nearest Neighbours

Produces a random batch of samples and finds the nearest neighbour images in the training set based on LPIPS distance.

python experiments/calc_nearest_neighbours.py --sampler absorbing --dataset churches --log_dir nearest_neighbours_churches --ae_load_dir vqae_churches --ae_load_step 2200000 --load_dir absorbing_churches --load_step 2000000

Generate Higher Resolution Samples

By applying the absorbing diffusion model to various locations at once and aggregating denoising probabilities, larger samples than observed during training are able to be generated (see Figures 4 and 11).

python experiments/generate_big_samples.py --sampler absorbing --dataset churches --log_dir big_samples_churches --ae_load_dir vqae_churches --ae_load_step 2200000 load_dir absorbing_churches --load_step 2000000 --shape 32 16

Use the --shape flag to specify the dimensions of the latents to generate.

Related Work

The following papers were particularly helpful when developing this work:

BibTeX

@article{bond2021unleashing,
  title     = {Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes},
  author    = {Sam Bond-Taylor and Peter Hessey and Hiroshi Sasaki and Toby P. Breckon and Chris G. Willcocks},
  journal   = {arXiv preprint arXiv:2111.12701},
  year      = {2021}
}
Owner
Sam Bond-Taylor
PhD student at Durham University interested in deep generative modelling.
Sam Bond-Taylor
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022