TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

Overview

M1-tensorflow-benchmark

TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

I was initially testing if TensorFlow was installed correctly so that code outside any context manager automatically runs on the GPU by using the with tf.device('/GPU:0') context manager. It would be interesting to compare this with free GPU services, so I also included Kaggle and Colab in the tests. Also tested M1's CPU.



This plot shows training time (y-axis) of an MLP with 5, 10, 15, 20 (x-axis) hidden layers of size 1024, and ReLU activation, trained on 50,000 CIFAR-10 images for 3 epochs.

The M1 looks comparable to a K80 which is nice if you always get locked out of Colab (like I do). But temps were worrying (~65 °C) this laptop is fanless after all. 🥲 Kaggle's P100 is 4x faster which is expected as the P100 provides 1.6x more GFLOPs and stacks 3x the memory bandwidth of the K80. The graph also confirms that the TF installation works and that TF code automatically runs on the GPU!


Extending the results

The code for running the benchmarks and consolidating the results in a plot is written so that it can easily incorporate results for new tests.

  1. Run the following script in your environment:
    import tensorflow as tf
    import time
    import pandas as pd
    print(tf.__version__)
    
    # Get CIFAR10 data; do basic preprocessing
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()
    X_train_scaled = X_train / 255.0
    y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=10, dtype='float32')
    
    # Define model constructor
    def get_model(depth):
        model = tf.keras.Sequential()
        model.add(tf.keras.layers.Flatten(input_shape=(32, 32, 3)))
        for _ in range(depth):
            model.add(tf.keras.layers.Dense(1024, activation='relu'))
        model.add(tf.keras.layers.Dense(10, activation='sigmoid'))
        model.compile(optimizer='SGD', loss='categorical_crossentropy', metrics=['accuracy'])
        return model
        
    YOUR_ENV_NAME = # Your environment's name here.
    network_depth = [5, 10, 15, 20]
    results = { depth: {} for depth in network_depth }
    for depth in network_depth:
        default_start_time = time.time()
        model = get_model(depth)
        model.fit(X_train_scaled, y_train_encoded, epochs=3)
        results[depth][YOUR_ENV_NAME] = time.time() - default_start_time
    
    # Save results
    pd.DataFrame(results).to_csv(f'results_{YOUR_ENV_NAME}.csv', index=True)
  2. Download the resulting CSV file and save it in the root directory alongside the other results_*.csv files.
  3. Run plot_results.py. Open results.png. A line graph of your results should be added to the above plot. 🥳

Devices used

  • Kaggle's P100
  • Google Colab's Tesla K80
  • Macbook Air 2020 M1 GPU (macOS Monterey v12.1)
  • Macbook Air 2020 M1 CPU (macOS Monterey v12.1)

Contribute

Please contribute by adding more tests with different architectures and dataset, or by running the benchmarks on different environments, e.g. GTX or RTX cards, M1 Max and M1 Pro are very much welcome.

Owner
particle
particle
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022