TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

Overview

M1-tensorflow-benchmark

TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

I was initially testing if TensorFlow was installed correctly so that code outside any context manager automatically runs on the GPU by using the with tf.device('/GPU:0') context manager. It would be interesting to compare this with free GPU services, so I also included Kaggle and Colab in the tests. Also tested M1's CPU.



This plot shows training time (y-axis) of an MLP with 5, 10, 15, 20 (x-axis) hidden layers of size 1024, and ReLU activation, trained on 50,000 CIFAR-10 images for 3 epochs.

The M1 looks comparable to a K80 which is nice if you always get locked out of Colab (like I do). But temps were worrying (~65 °C) this laptop is fanless after all. 🥲 Kaggle's P100 is 4x faster which is expected as the P100 provides 1.6x more GFLOPs and stacks 3x the memory bandwidth of the K80. The graph also confirms that the TF installation works and that TF code automatically runs on the GPU!


Extending the results

The code for running the benchmarks and consolidating the results in a plot is written so that it can easily incorporate results for new tests.

  1. Run the following script in your environment:
    import tensorflow as tf
    import time
    import pandas as pd
    print(tf.__version__)
    
    # Get CIFAR10 data; do basic preprocessing
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()
    X_train_scaled = X_train / 255.0
    y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=10, dtype='float32')
    
    # Define model constructor
    def get_model(depth):
        model = tf.keras.Sequential()
        model.add(tf.keras.layers.Flatten(input_shape=(32, 32, 3)))
        for _ in range(depth):
            model.add(tf.keras.layers.Dense(1024, activation='relu'))
        model.add(tf.keras.layers.Dense(10, activation='sigmoid'))
        model.compile(optimizer='SGD', loss='categorical_crossentropy', metrics=['accuracy'])
        return model
        
    YOUR_ENV_NAME = # Your environment's name here.
    network_depth = [5, 10, 15, 20]
    results = { depth: {} for depth in network_depth }
    for depth in network_depth:
        default_start_time = time.time()
        model = get_model(depth)
        model.fit(X_train_scaled, y_train_encoded, epochs=3)
        results[depth][YOUR_ENV_NAME] = time.time() - default_start_time
    
    # Save results
    pd.DataFrame(results).to_csv(f'results_{YOUR_ENV_NAME}.csv', index=True)
  2. Download the resulting CSV file and save it in the root directory alongside the other results_*.csv files.
  3. Run plot_results.py. Open results.png. A line graph of your results should be added to the above plot. 🥳

Devices used

  • Kaggle's P100
  • Google Colab's Tesla K80
  • Macbook Air 2020 M1 GPU (macOS Monterey v12.1)
  • Macbook Air 2020 M1 CPU (macOS Monterey v12.1)

Contribute

Please contribute by adding more tests with different architectures and dataset, or by running the benchmarks on different environments, e.g. GTX or RTX cards, M1 Max and M1 Pro are very much welcome.

Owner
particle
particle
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023