TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

Overview

M1-tensorflow-benchmark

TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

I was initially testing if TensorFlow was installed correctly so that code outside any context manager automatically runs on the GPU by using the with tf.device('/GPU:0') context manager. It would be interesting to compare this with free GPU services, so I also included Kaggle and Colab in the tests. Also tested M1's CPU.



This plot shows training time (y-axis) of an MLP with 5, 10, 15, 20 (x-axis) hidden layers of size 1024, and ReLU activation, trained on 50,000 CIFAR-10 images for 3 epochs.

The M1 looks comparable to a K80 which is nice if you always get locked out of Colab (like I do). But temps were worrying (~65 °C) this laptop is fanless after all. 🥲 Kaggle's P100 is 4x faster which is expected as the P100 provides 1.6x more GFLOPs and stacks 3x the memory bandwidth of the K80. The graph also confirms that the TF installation works and that TF code automatically runs on the GPU!


Extending the results

The code for running the benchmarks and consolidating the results in a plot is written so that it can easily incorporate results for new tests.

  1. Run the following script in your environment:
    import tensorflow as tf
    import time
    import pandas as pd
    print(tf.__version__)
    
    # Get CIFAR10 data; do basic preprocessing
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()
    X_train_scaled = X_train / 255.0
    y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=10, dtype='float32')
    
    # Define model constructor
    def get_model(depth):
        model = tf.keras.Sequential()
        model.add(tf.keras.layers.Flatten(input_shape=(32, 32, 3)))
        for _ in range(depth):
            model.add(tf.keras.layers.Dense(1024, activation='relu'))
        model.add(tf.keras.layers.Dense(10, activation='sigmoid'))
        model.compile(optimizer='SGD', loss='categorical_crossentropy', metrics=['accuracy'])
        return model
        
    YOUR_ENV_NAME = # Your environment's name here.
    network_depth = [5, 10, 15, 20]
    results = { depth: {} for depth in network_depth }
    for depth in network_depth:
        default_start_time = time.time()
        model = get_model(depth)
        model.fit(X_train_scaled, y_train_encoded, epochs=3)
        results[depth][YOUR_ENV_NAME] = time.time() - default_start_time
    
    # Save results
    pd.DataFrame(results).to_csv(f'results_{YOUR_ENV_NAME}.csv', index=True)
  2. Download the resulting CSV file and save it in the root directory alongside the other results_*.csv files.
  3. Run plot_results.py. Open results.png. A line graph of your results should be added to the above plot. 🥳

Devices used

  • Kaggle's P100
  • Google Colab's Tesla K80
  • Macbook Air 2020 M1 GPU (macOS Monterey v12.1)
  • Macbook Air 2020 M1 CPU (macOS Monterey v12.1)

Contribute

Please contribute by adding more tests with different architectures and dataset, or by running the benchmarks on different environments, e.g. GTX or RTX cards, M1 Max and M1 Pro are very much welcome.

Owner
particle
particle
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021