An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Overview

Federated Averaging (FedAvg) in PyTorch arXiv

An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-Efficient Learning of Deep Networks from Decentralized Data in PyTorch. (implemented in Python 3.9.2.)

Implementation points

  • Exactly implement the models ('2NN' and 'CNN' mentioned in the paper) to have the same number of parameters written in the paper.
    • 2NN: TwoNN class in models.py; 199,210 parameters
    • CNN: CNN class in models.py; 1,663,370 parameters
  • Exactly implement the non-IID data split.
    • Each client has at least two digits in case of using MNIST dataset.
  • Implement multiprocessing of client update and client evaluation.
  • Support TensorBoard for log tracking.

Requirements

  • See requirements.txt

Configurations

  • See config.yaml

Run

  • python3 main.py

Results

MNIST

  • Number of clients: 100 (K = 100)
  • Fraction of sampled clients: 0.1 (C = 0.1)
  • Number of rounds: 500 (R = 500)
  • Number of local epochs: 10 (E = 10)
  • Batch size: 10 (B = 10)
  • Optimizer: torch.optim.SGD
  • Criterion: torch.nn.CrossEntropyLoss
  • Learning rate: 0.01
  • Momentum: 0.9
  • Initialization: Xavier

Table 1. Final accuracy and the best accuracy

Model Final Accuracy(IID) (Round) Best Accuracy(IID) (Round) Final Accuracy(non-IID) (Round) Best Accuracy(non-IID) (Round)
2NN 98.38% (500) 98.45% (483) 97.50% (500) 97.65% (475)
CNN 99.31% (500) 99.34% (197) 98.73% (500) 99.28% (493)

Table 2. Final loss and the least loss

Model Final Loss(IID) (Round) Least Loss(IID) (Round) Final Loss(non-IID) (Round) Least Loss(non-IID) (Round)
2NN 0.09296 (500) 0.06956 (107) 0.09075 (500) 0.08257 (475)
CNN 0.04781 (500) 0.02497 (86) 0.04533 (500) 0.02413 (366)

Figure 1. MNIST 2NN model accuracy (IID: top / non-IID: bottom) iidmnist run-Accuracy_ MNIST _TwoNN C_0 1, E_10, B_10, IID_False-tag-Accuracy

Figure 2. MNIST CNN model accuracy (IID: top / non-IID: bottom) run-Accuracy_ MNIST _CNN C_0 1, E_10, B_10, IID_True-tag-Accuracy Accuracy

TODO

  • Do CIFAR experiment (CIFAR10 dataset) & large-scale LSTM experiment (Shakespeare dataset)
  • Learning rate scheduling
  • More experiments with other hyperparameter settings (e.g., different combinations of B, E, K, and C)
Owner
Seok-Ju Hahn
atta-dipa dhamma-dipa
Seok-Ju Hahn
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023