Data-depth-inference - Data depth inference with python

Overview

Welcome!

This readme will guide you through the use of the code in this repository.

The code in this repository is for nonparametric prior-free and likelihood-free posterior inference.

We named this method: Inference with consonant structures via data peeling

As the name suggests, this method construct consonant confidence structures directly from data using a procedure name data peeling.

When to use this code?

  • The probability distribution of the data-generating mechanism, $P_{X}$ is multivariate (d>2)
  • The distribution family (e.g. lognormal) of $P_{X}$ is unkown
  • $P_{X}$ is stationary
  • $X_{i}, i=1,...,n$ are iid samples drown from $P_{X}$
  • For backward propagation, i.e. $P_{X}$ is the distribution of an output quantity and inference is done on the inputs
  • When uncertainty quantification based solely on data is needed: e.g. computing failure probability based on data only
  • When there is scarcity of data (small sample size), so the inferential (epistemic) uncertainty is predominant
  • The model x=f(y) is not available, but runs of the model can be requested offline
  • When the data has inherent uncertainty, i.e. interval uncertainty

Why use this code?

  • It's nonparametric so there is no need to assume a distribution family
  • It's prior-free so no prior knowledge is needed on the parameters to be inferred
  • It's likelihood-free so no stochastic assumption about the error is made
  • It is fully parallel, so only indipendent evaluations of the model are needed
  • The inferential (epistemic) uncertainty is rigorously quantified
  • The dipendence between the paramters is fully quantified and encoded in the structures

When not to use this code?

  • The sample size of the data set is way larger than its dimension (use parametric inference instead or prior-based inference)
  • $P_{X}$ is highly non-stationary

Unanswered questions

  • How can the assumption of consonance be relaxed to better approximate the credal set?
  • How can we spot precise distributions compatible with the structures that are not in the credal set?
  • How can the peeling procedure be extended to parametric inference?

Extensions and future work

(1) Compute data depths with complex shapes, e.g. using a perceptron representation

(2) Add code for discovering precise probability distribution in the consonant structures

(3) Add code for computing the data depth of box-shaped samples (inherent uncertainty)

References

[1] De Angelis, M., Rocchetta, R., Gray, A., & Ferson, S. (2021). Constructing Consonant Predictive Beliefs from Data with Scenario Theory. Proceedings of Machine Learning Research, 147, 362-362. https://leo.ugr.es/isipta21/pmlr/deangelis21.pdf

[2] https://opensource.org/licenses/MIT

Getting started

First, download or clone this repository on your local machine.

git clone [email protected]:marcodeangelis/data-depth-inference.git

Then change directory cd to the downloaded repository, and open a Python interpreter or Jupyter notebook.

We'll start by importing the code that we need.

from algorithm.peeling import (data_peeling_algorithm,data_peeling_backward,peeling_to_structure,uniform)
from algorithm.plots import (plot_peeling,plot_peeling_nxd,plot_peeling_nxd_back,plot_peeling_nx2,plot_scattermatrix,plot_fuzzy)
from algorithm.fuzzy import (samples_to_fuzzy_projection,boxes_to_fuzzy_projection,coverage_samples)
from algorithm.examples import (pickle_load,pickle_dump,banana_data,banana_model)

Forward inference problem

The forward inference problem consists in targeting $p_{X}$, and characterising the inferential uncertainty of the quantity $X$ that is being observed.

Generating synthetic data

Let us generate n=100 iid samples from some data generating mechanism. We'll then need to forget about the mechanism, as in reality we are not supposed to know what $P_{X}$ looks like.

Each sample $X_i$ is a vector with three components: $X_i \in R^3$, so $d=3$.

X = banana_data(n=100,d=3)

Let us see how this data looks like in a scatter plot:

plot_scattermatrix(X,bins=20,figsize=(10,10))

png

Run the inference algorithm

We can now apply the data-peeling procedure to output the depth of the data set.

a,b = data_peeling_algorithm(X,tol=0.01)
# a: is a list of subindices corresponding to the support vectors
# b: is a list of enclosing sets (boxes by default)

The depth of the data is an integer indicating how many levels there are.

We can now assign to each level a lower probability measure either using scenario theory or c-boxes. We'll set the confidence level to $\beta=0.01$.

f,p = peeling_to_structure(a,b,kind='scenario',beta=0.01)
# f: is a structure containing projections
# p: is a list of lower probability, one for each level

With the enclosing sets and the lower measures associated to them, we can now plot the results

plot_peeling_nxd(X,a,b,p=p,figsize=(12,12))

png

The inference task terminates here.

What next?

(1) We can hypothesise a joint probability distribution $\hat{P}_{X}$ and check if it is contained in the consonant structure.

Then, repeating this procedure we can build a set of compatible distribtions, however there will be no guarantee that these distributions are in the actual credal set. So by doing so we'll lose rigour.

(2) We can use an possibility-to-imprecise-probability transform to turn these structures into p-boxes.

Backward (indirect) inference problem

The backward inference problem targets $P_{Y}$, while characterising the inferential uncertainty of the quantity $X$, which is inderectly been observed via $Y=f(X)$.

In other words, we target $P_{Y}$, while learning $P(X)$, with $Y=f(X)$.

We'll call $f$ a model, for example an engineering model.

Generating synthetic data

Again we'll generate n=100 iid samples from some data generating mechanism $P_{Y}$. Each sample $Y_i$ is a vector with two components: $Y_i \in R^2$, so $d=2$.

However, this time we are going to need to know the model $f$ that links the input space $X$ with the output space $Y$.

The model is as follows: $f:R^3 -> R^2$, so each sample in the input space is a vector with three components: $X_i \in R^3$, so $d_=3$.

For simplicity and without loss of generality we'll assume that the model $f$ is the correct one. So $Y_i$ will be generated via the function itself.

Let us define the model as described above, so: $y = (3 x_1 * x_3,\ x_1^2 + x_2)$.

In code the expression looks:

import numpy
def f(x):
    d=2
    n,d_ = x.shape
    y = numpy.empty((n,d),dtype=float)
    y[:,0], y[:,1] = x[:,0]*3 + x[:,2], x[:,0]**2 + x[:,1] 
    return y

Now we generate n=100 random data for $X$ and pass it through $f$ to obtain our data $Y_i$.

import scipy.stats as stats
n, d_ = 100, 3
X_proxy = stats.norm(loc=0,scale=2).rvs((n,d_))
Y = f(X_proxy) # <- this is our target

Run the inference algorithm

We can now run the backward inference procedure.

Step 1: Bound the input space

Define bounds of the input space where it is expected the indirect observations to be placed.

Clues may come from the physics of the problem under study.

x_lo, x_hi = d_*[-10], d_*[10]

Step 2: Cover the input space with evenly spaces samples

Ideally these samples are generated using a low-discrepancy sampling scheme.

We'll use 100 000 samples for this example.

ux = uniform(x_lo, x_hi, N=100_000)
uy.shape # prints (100000,3)

Step 3: Evaluate the model on the coverage samples

This step is the most computationally expensive, and should be done offline and if possible and needed in parallel.

Luckily this evaluation depends only on the bounds (previous step) and need not be repeated if the bounds don't change or the model doesn't change.

uy = f(ux)
uy.shape # prints (100000,2)

Step 4: Compute data depth of $Y$

In practice, we run the forward data-peeling algorithm for $Y$, subindexing the coverage samples in the output space.

a,b,c = data_peeling_backward(uy,Y,tol=1e-1)
# a: a list of subindices corresponding to the support vectors
# b: a list of enclosing sets (boxes by default)
# c: a list of masks indicating the coverage samples belonging to each set

Step 5: Compute lower probability measure and create structure

We'll use scenario theory to compute a lower probability measure for each enclosing set.

The data depth i.e. the number of levels is l = len(a) = len(b) = len(c).

fy,p = peeling_to_structure(a,b,kind='scenario',beta=0.01)
# fy: a structure containing projections (fuzzy structure)
# p: a list of lower probability, one for each level

fy.shape  # prints: (26,2,2)

Step 6: Obtain marginal structures (fuzzy numbers) by projecting the coverage samples

This steps builds the marginal fuzzy structures of the inderect observations.

fx = samples_to_fuzzy_projection(ux,c)
# fy: a structure containing projections of the original multivariate structure in the input space

fx.shape # prints: (26,3,2)

Plotting

plot_fuzzy(fx,p=p,grid=True,figsize=(12,7))

png

plot_peeling_nxd(Y,a,b,p=p,figsize=(9,9),grid=False,label='Y')

png

plot_peeling_nxd_back(ux,c,p=p,baseline_alpha=0.9,figsize=(12,12))

png

Owner
Marco
Postdoc in Engineering @ Uni of Liverpool.
Marco
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022