Data-depth-inference - Data depth inference with python

Overview

Welcome!

This readme will guide you through the use of the code in this repository.

The code in this repository is for nonparametric prior-free and likelihood-free posterior inference.

We named this method: Inference with consonant structures via data peeling

As the name suggests, this method construct consonant confidence structures directly from data using a procedure name data peeling.

When to use this code?

  • The probability distribution of the data-generating mechanism, $P_{X}$ is multivariate (d>2)
  • The distribution family (e.g. lognormal) of $P_{X}$ is unkown
  • $P_{X}$ is stationary
  • $X_{i}, i=1,...,n$ are iid samples drown from $P_{X}$
  • For backward propagation, i.e. $P_{X}$ is the distribution of an output quantity and inference is done on the inputs
  • When uncertainty quantification based solely on data is needed: e.g. computing failure probability based on data only
  • When there is scarcity of data (small sample size), so the inferential (epistemic) uncertainty is predominant
  • The model x=f(y) is not available, but runs of the model can be requested offline
  • When the data has inherent uncertainty, i.e. interval uncertainty

Why use this code?

  • It's nonparametric so there is no need to assume a distribution family
  • It's prior-free so no prior knowledge is needed on the parameters to be inferred
  • It's likelihood-free so no stochastic assumption about the error is made
  • It is fully parallel, so only indipendent evaluations of the model are needed
  • The inferential (epistemic) uncertainty is rigorously quantified
  • The dipendence between the paramters is fully quantified and encoded in the structures

When not to use this code?

  • The sample size of the data set is way larger than its dimension (use parametric inference instead or prior-based inference)
  • $P_{X}$ is highly non-stationary

Unanswered questions

  • How can the assumption of consonance be relaxed to better approximate the credal set?
  • How can we spot precise distributions compatible with the structures that are not in the credal set?
  • How can the peeling procedure be extended to parametric inference?

Extensions and future work

(1) Compute data depths with complex shapes, e.g. using a perceptron representation

(2) Add code for discovering precise probability distribution in the consonant structures

(3) Add code for computing the data depth of box-shaped samples (inherent uncertainty)

References

[1] De Angelis, M., Rocchetta, R., Gray, A., & Ferson, S. (2021). Constructing Consonant Predictive Beliefs from Data with Scenario Theory. Proceedings of Machine Learning Research, 147, 362-362. https://leo.ugr.es/isipta21/pmlr/deangelis21.pdf

[2] https://opensource.org/licenses/MIT

Getting started

First, download or clone this repository on your local machine.

git clone [email protected]:marcodeangelis/data-depth-inference.git

Then change directory cd to the downloaded repository, and open a Python interpreter or Jupyter notebook.

We'll start by importing the code that we need.

from algorithm.peeling import (data_peeling_algorithm,data_peeling_backward,peeling_to_structure,uniform)
from algorithm.plots import (plot_peeling,plot_peeling_nxd,plot_peeling_nxd_back,plot_peeling_nx2,plot_scattermatrix,plot_fuzzy)
from algorithm.fuzzy import (samples_to_fuzzy_projection,boxes_to_fuzzy_projection,coverage_samples)
from algorithm.examples import (pickle_load,pickle_dump,banana_data,banana_model)

Forward inference problem

The forward inference problem consists in targeting $p_{X}$, and characterising the inferential uncertainty of the quantity $X$ that is being observed.

Generating synthetic data

Let us generate n=100 iid samples from some data generating mechanism. We'll then need to forget about the mechanism, as in reality we are not supposed to know what $P_{X}$ looks like.

Each sample $X_i$ is a vector with three components: $X_i \in R^3$, so $d=3$.

X = banana_data(n=100,d=3)

Let us see how this data looks like in a scatter plot:

plot_scattermatrix(X,bins=20,figsize=(10,10))

png

Run the inference algorithm

We can now apply the data-peeling procedure to output the depth of the data set.

a,b = data_peeling_algorithm(X,tol=0.01)
# a: is a list of subindices corresponding to the support vectors
# b: is a list of enclosing sets (boxes by default)

The depth of the data is an integer indicating how many levels there are.

We can now assign to each level a lower probability measure either using scenario theory or c-boxes. We'll set the confidence level to $\beta=0.01$.

f,p = peeling_to_structure(a,b,kind='scenario',beta=0.01)
# f: is a structure containing projections
# p: is a list of lower probability, one for each level

With the enclosing sets and the lower measures associated to them, we can now plot the results

plot_peeling_nxd(X,a,b,p=p,figsize=(12,12))

png

The inference task terminates here.

What next?

(1) We can hypothesise a joint probability distribution $\hat{P}_{X}$ and check if it is contained in the consonant structure.

Then, repeating this procedure we can build a set of compatible distribtions, however there will be no guarantee that these distributions are in the actual credal set. So by doing so we'll lose rigour.

(2) We can use an possibility-to-imprecise-probability transform to turn these structures into p-boxes.

Backward (indirect) inference problem

The backward inference problem targets $P_{Y}$, while characterising the inferential uncertainty of the quantity $X$, which is inderectly been observed via $Y=f(X)$.

In other words, we target $P_{Y}$, while learning $P(X)$, with $Y=f(X)$.

We'll call $f$ a model, for example an engineering model.

Generating synthetic data

Again we'll generate n=100 iid samples from some data generating mechanism $P_{Y}$. Each sample $Y_i$ is a vector with two components: $Y_i \in R^2$, so $d=2$.

However, this time we are going to need to know the model $f$ that links the input space $X$ with the output space $Y$.

The model is as follows: $f:R^3 -> R^2$, so each sample in the input space is a vector with three components: $X_i \in R^3$, so $d_=3$.

For simplicity and without loss of generality we'll assume that the model $f$ is the correct one. So $Y_i$ will be generated via the function itself.

Let us define the model as described above, so: $y = (3 x_1 * x_3,\ x_1^2 + x_2)$.

In code the expression looks:

import numpy
def f(x):
    d=2
    n,d_ = x.shape
    y = numpy.empty((n,d),dtype=float)
    y[:,0], y[:,1] = x[:,0]*3 + x[:,2], x[:,0]**2 + x[:,1] 
    return y

Now we generate n=100 random data for $X$ and pass it through $f$ to obtain our data $Y_i$.

import scipy.stats as stats
n, d_ = 100, 3
X_proxy = stats.norm(loc=0,scale=2).rvs((n,d_))
Y = f(X_proxy) # <- this is our target

Run the inference algorithm

We can now run the backward inference procedure.

Step 1: Bound the input space

Define bounds of the input space where it is expected the indirect observations to be placed.

Clues may come from the physics of the problem under study.

x_lo, x_hi = d_*[-10], d_*[10]

Step 2: Cover the input space with evenly spaces samples

Ideally these samples are generated using a low-discrepancy sampling scheme.

We'll use 100 000 samples for this example.

ux = uniform(x_lo, x_hi, N=100_000)
uy.shape # prints (100000,3)

Step 3: Evaluate the model on the coverage samples

This step is the most computationally expensive, and should be done offline and if possible and needed in parallel.

Luckily this evaluation depends only on the bounds (previous step) and need not be repeated if the bounds don't change or the model doesn't change.

uy = f(ux)
uy.shape # prints (100000,2)

Step 4: Compute data depth of $Y$

In practice, we run the forward data-peeling algorithm for $Y$, subindexing the coverage samples in the output space.

a,b,c = data_peeling_backward(uy,Y,tol=1e-1)
# a: a list of subindices corresponding to the support vectors
# b: a list of enclosing sets (boxes by default)
# c: a list of masks indicating the coverage samples belonging to each set

Step 5: Compute lower probability measure and create structure

We'll use scenario theory to compute a lower probability measure for each enclosing set.

The data depth i.e. the number of levels is l = len(a) = len(b) = len(c).

fy,p = peeling_to_structure(a,b,kind='scenario',beta=0.01)
# fy: a structure containing projections (fuzzy structure)
# p: a list of lower probability, one for each level

fy.shape  # prints: (26,2,2)

Step 6: Obtain marginal structures (fuzzy numbers) by projecting the coverage samples

This steps builds the marginal fuzzy structures of the inderect observations.

fx = samples_to_fuzzy_projection(ux,c)
# fy: a structure containing projections of the original multivariate structure in the input space

fx.shape # prints: (26,3,2)

Plotting

plot_fuzzy(fx,p=p,grid=True,figsize=(12,7))

png

plot_peeling_nxd(Y,a,b,p=p,figsize=(9,9),grid=False,label='Y')

png

plot_peeling_nxd_back(ux,c,p=p,baseline_alpha=0.9,figsize=(12,12))

png

Owner
Marco
Postdoc in Engineering @ Uni of Liverpool.
Marco
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022