Code for Active Learning at The ImageNet Scale.

Overview

Active Learning at the ImageNet Scale

This repo contains code for the paper Active Learning at the ImageNet Scale by Zeyad Emam*, Hong-Min Chu*, Ping-Yeh Chiang*, Wojtek Czaja, Richard Leapman, Micah Goldblum, and Tom Goldstein.

Requirements

pip install -r requirements.txt

Comet and Logging

This project uses Comet ML to log all experiments, you must install comet_ml (included in requirements.txt), however, the code does not require the user to have a Comet ML account or to enable comet logging at all. If you choose to use comet ML, then you should include your API key in your home directory ~/.comet.config (more on this in the Comet ML documentation). To use comet make sure the use the flag --enable_comet.

Logs and network weights are stored according to the command line arguments --log_dir and --ckpt_path.

Loading SSP checkpoints

Self-supervised pretrained checkpoints must be obtained separately and specified in ./src/arg_pools for each argpool, under the key "init_pretrained_ckpt_path". To access the checkpoints used in our experiments, please use the following links:

Sample Commands to Reproduce the Results in the Paper

Each Imagenet experiment was conducted on a cluster node with a single V100-SXM2 GPU (32GB VRAM), 64gb of RAM, and 16 2.3 GHz Intel Gold 6140 cpus. If more than one gpu are available on the node, the code will automatically distribute batches across all gpus using DistributedDataParallel training.

Below is a sample command for running an experiment. The full list of command line arguments can be found in src/utils/parser.py.

python main_al.py --dataset_dir 
   
     --exp_name RandomSampler_arg_ssp_linear_evaluation_imagenet_b10000 --dataset imagenet --arg_pool ssp_linear_evaluation --model SSLResNet50 --strategy RandomSampler --rounds 8 --round_budget 10000 --init_pool_size 30000 --subset_labeled 50000 --subset_unlabeled 80000 --freeze_feature --partitions 10 --init_pool_type random 

   

The full list of commands to reproduce all plots in the paper can be obtained by running python src/gen_jobs.py.

Owner
Zeyad Emam
PhD student in Applied Mathematics at the University of Maryland - College Park and Pre-doctoral IRTA fellow at NIH.
Zeyad Emam
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023