Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Overview

Differential Privacy (DP) Based Federated Learning (FL)

Everything about DP-based FL you need is here.

(所有你需要的DP-based FL的信息都在这里)

Code

Tip: the code of this repository is my personal implementation, if there is an inaccurate place please contact me, welcome to discuss with each other. The FL code of this repository is based on this repository .I hope you like it and support it. Welcome to submit PR to improve the repository.

(提示:本仓库的代码均为本人个人实现,如有不准确的地方请联系本人,欢迎互相讨论。 本仓库的FL代码是基于 这个仓库 实现的,希望大家都能点赞多多支持,欢迎大家提交PR完善,谢谢! )

Note that in order to ensure that each client is selected a fixed number of times (to compute privacy budget each time the client is selected), this code uses round-robin client selection, which means that each client is selected sequentially.

(注意,为了保证每个客户端被选中的次数是固定的(为了计算机每一次消耗的隐私预算),本代码使用了Round-robin的选择客户端机制,也就是说每个client是都是被顺序选择的。 )

Important note: The number of FL local update rounds used in this code is all 1, please do not change, once the number of local iteration rounds is changed, the sensitivity in DP needs to be recalculated, the upper bound of sensitivity will be a large value, and the privacy budget consumed in each round will become a lot, so please use the parameter setting of Local epoch = 1.

(重要提示:本代码使用的FL本地更新轮数均为1,请勿更改,一旦更改本地迭代轮数,DP中的敏感度需要重新计算,敏感度上界会是一个很大的值,每一轮消耗的隐私预算会变得很多,所以请使用local epoch = 1的参数设置。)

Parameter List

Datasets: MNIST, Cifar-10, FEMNIST, Fashion-MNIST, Shakespeare.

Model: CNN, MLP, LSTM for Shakespeare

DP Mechanism: Laplace, Gaussian(Simple Composition), Todo: Gaussian(moments accountant)

DP Parameter: $\epsilon$ and $\delta$

DP Clip: In DP-based FL, we usually clip the gradients in training and the clip is an important parameter to calculate the sensitivity.

No DP

You can run like this:

python main.py --dataset mnist --iid --model cnn --epochs 50 --dp_mechanism no_dp

Laplace Mechanism

This code is based on Simple Composition in DP. In other words, if a client's privacy budget is $\epsilon$ and the client is selected $T$ times, the client's budget for each noising is $\epsilon / T$.

(该代码是基于Simple Composition的,也就是说,如果某个客户端的隐私预算是$\epsilon$,这个客户端被选中$T$次的话,那么该客户端每次加噪使用的预算为$\epsilon / T$ )

You can run like this:

python main.py --dataset mnist --iid --model cnn --epochs 50 --dp_mechanism Laplace --dp_epsilon 10 --dp_clip 10

Gaussian Mechanism

Simple Composition

The same as Laplace Mechanism.

You can run like this:

python main.py --dataset mnist --iid --model cnn --epochs 50 --dp_mechanism Gaussian --dp_epsilon 10 --dp_delta 1e-5 --dp_clip 10

Moments Accountant

See the paper for detailed mechanism.

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.

To do...

Papers

  • Reviews
    • Rodríguez-Barroso, Nuria, et al. "Federated Learning and Differential Privacy: Software tools analysis, the Sherpa. ai FL framework and methodological guidelines for preserving data privacy." Information Fusion 64 (2020): 270-292.
  • Gaussian Mechanism
    • Wei, Kang, et al. "Federated learning with differential privacy: Algorithms and performance analysis." IEEE Transactions on Information Forensics and Security 15 (2020): 3454-3469.
    • Geyer, Robin C., Tassilo Klein, and Moin Nabi. "Differentially private federated learning: A client level perspective." arXiv preprint arXiv:1712.07557 (2017).
    • Seif, Mohamed, Ravi Tandon, and Ming Li. "Wireless federated learning with local differential privacy." 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020.
    • Naseri, Mohammad, Jamie Hayes, and Emiliano De Cristofaro. "Toward robustness and privacy in federated learning: Experimenting with local and central differential privacy." arXiv e-prints (2020): arXiv-2009.
    • Truex, Stacey, et al. "A hybrid approach to privacy-preserving federated learning." Proceedings of the 12th ACM workshop on artificial intelligence and security. 2019.
    • Triastcyn, Aleksei, and Boi Faltings. "Federated learning with bayesian differential privacy." 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019.
  • Laplace Mechanism
    • Wu, Nan, et al. "The value of collaboration in convex machine learning with differential privacy." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.
    • Olowononi, Felix O., Danda B. Rawat, and Chunmei Liu. "Federated learning with differential privacy for resilient vehicular cyber physical systems." 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2021.
  • Other Mechanism
    • Sun, Lichao, Jianwei Qian, and Xun Chen. "Ldp-fl: Practical private aggregation in federated learning with local differential privacy." arXiv preprint arXiv:2007.15789 (2020).
    • Liu, Ruixuan, et al. "Fedsel: Federated sgd under local differential privacy with top-k dimension selection." International Conference on Database Systems for Advanced Applications. Springer, Cham, 2020.
    • Truex, Stacey, et al. "LDP-Fed: Federated learning with local differential privacy." Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking. 2020.
    • Zhao, Yang, et al. "Local differential privacy-based federated learning for internet of things." IEEE Internet of Things Journal 8.11 (2020): 8836-8853.
Owner
wenzhu
Student Major in Computer Science
wenzhu
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022