Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Overview

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Figure: Example visualization of the method and baseline as a spectogram

This is the implementation of our Project for the course "Deep Learning: Architectures and Methods" by Prof. Christian Kersting from the Artificial Intelligence and Machine Learning Lab at the Technical University of Darmstadt in the summer semester 2021.

In the field of audio signal processing, Super-Resolution is one of the most relevant topics. The motivation is to reconstruct high- quality audio from low-quality signals. From a practical perspective, the technique has applications in telephony or generally in applications in which audio is transmitted and has to be compressed accordingly. Other applications are the processing of ancient recordings, for example old sound recordings of music, speech or videos. First approaches of the combination of machine learning and audio signal processing lead to promising results and outperform standard techniques. Accordingly the scope of the project was to reimplement the paper Temporal FiLM: Capturing Long-Range SequenceDependencies with Feature-Wise Modulation by Birnbaum et al. in PyTorch, reproduce the results and extend them further to the music domain.

This repository contains everything needed to prepare the data sets, train the model and create final evaluation and visualization of the results. We also provide the weights of the models to reproduce our reported results.

Installation

This project was originally developed with Python 3.8, PyTorch 1.7, and CUDA 11.0. The training requires at least one NVIDIA GeForce GTX 980 (4GB memory).

  • Create conda environment:
conda create --name audiosr
source activate audiosr
conda install PYTORCH torchvision cudatoolkit=11.0 -c pytorch
  • Install the dependencies:
pip install -r requirements.txt

Dataset preparation

To reproduce the results shown below tha datasets have to be prepared. This repo includes scripts to prepare the following dataset:

VCTK preparation

  • run prep_dataset.py from ./datasets to create a h5 container of a specified input.
  • to reproduce results prepare the following h5 files:
python prep_dataset.py \
  --file-list vctk/speaker1/speaker1-train-files.txt \
  --in-dir ./VCTK-Corpus/wav48/p225/ \
  --out vctk-speaker1-train.4.16000.8192.4096.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 4096 \
  --interpolate \
  --low-pass
python prep_dataset.py \
  --file-list vctk/speaker1/speaker1-val-files.txt \
  --in-dir ./VCTK-Corpus/wav48/p225/ \
  --out vctk-speaker1-val.4.16000.8192.4096.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 4096 \
  --interpolate \
  --low-pass

GTZAN preparation

  • run prep_dataset.py from ./datasets to create a h5 container of a specified input.
  • to reproduce results prepare the following h5 files:
python prep_dataset.py \
  --file-list gtzan/blues_wav_list_train.txt \
  --in-dir gtzan/data/genres/blues/ \
  --out blues-train.4.22000.8192.16384.h5 \
  --scale 4 \
  --sr 22000 \
  --dimension 8192 \
  --stride 16384 \
  --interpolate \
  --low-pass
python prep_dataset.py \
  --file-list gtzan/blues_wav_list_val.txt \
  --in-dir gtzan/data/genres/blues/ \
  --out blues-val.4.22000.8192.16384.h5 \
  --scale 4 \
  --sr 22000 \
  --dimension 8192 \
  --stride 16384 \
  --interpolate \
  --low-pass

Piano dataset preparation

python prep_piano.py \
  --file-list data/music_train.npy \
  --out piano-train.4.16000.8192.131072.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 131072 \
  --interpolate \
  --low-pass
python prep_piano.py \
  --file-list data/music_valid.npy \
  --out piano-val.4.16000.8192.131072.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 131072 \
  --interpolate \
  --low-pass

Notes:

  • the --in-dir argument has to be adapted to the respective dataset location
  • The dimension parameter and sampling rate define the absolute length of a patch (dim/sr = length patch)

Model

Generally, there are three main models in this implementation.

Baseline

On the one hand the b-spline interpolation which serves as the baseline and can be found in the data loader in prep_dataset.py.

Model

On the other hand two neural networks whose implementation can be found in the /models/ folder. In a first step a model was implemented which uses a batchnorm layer instead of the later used TFILM layer. This is implemented in audiounet.py. The final model, which is also used in the paper, can be found in tfilmunet.py.

Train Model

To run the trainings use the following commands and change the dataset root the corresponding domain.

python train.py \
  --dataset-root hereroottodataset! \
  --epochs 50 \
  --lr 3*10e-4 \
  --batch-size 16 

Evaluation

Save examples from inference

It is possible to evaluate any given wav-file with the inference.py script by invoking the --save-example flag and saving the results as wav-files and spectrogram plots. The script performs the following steps:

  • prepares all files in a provided list (--wave-file-list) and creates a low-res version and the baseline reconstruction
  • runs inference on the prepared files to create a super-resolution output
  • saves all results to the "examples" folder with the respective file names
  • saves spectrogram plots of all versions as pdf-files

Notes:

It is important to adapt the sampling parameter (--sr) which is set to 16000 by default. The sampling rate has to be the one of the original wav file. The scale (--scale) defines the down sampling factor which is set to 4 by default. Depending on which trained model is used for the inference the parameters --checkpoints-root and --checkpoint have to be specified accordingly.

To reproduce an example from our plot run the following command from the repo root directory (modify --checkpoints-root if necessary):

python inference.py \
  --save-example \
  --wave-file-list assets/save_wav_list.txt \
  --scale 4 \
  --sr 16000 \
  --checkpoint pretrained/vctk_speaker1_pretrained.pth

Results

Training Dataset Ratio BASELINE SNR (dB) BASELINE LSD (dB) METHOD SNR (dB) METHOD LSD (dB) Checkpoint
VTCK SingleSpeaker r = 4 15.6 5.4 16.6 3.2 Checkpoint
Piano r = 4 19.7 2.9 20.4 2.2 Checkpoint
GTZAN (Genre: Blues) r = 4 13.3 7.8 13.8 3.8 Checkpoint

Qualitative Examples

Here we provide a qualitative example per Dataset. These can be generated using inference.py

VTCK SingleSpeaker Piano GTZAN (Genre: Blues)
Low Resolution Low Resolution Low Resolution
Baseline Baseline Baseline
Method Method Method
High Resolution High Resolution High Resolution
Owner
Oliver Hahn
Master Thesis @VIsual Inference Lab | Grad Student @Technical University of Darmstadt
Oliver Hahn
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021