Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Overview

Autoregressive Predictive Coding

This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed in An Unsupervised Autoregressive Model for Speech Representation Learning.

APC is a speech feature extractor trained on a large amount of unlabeled data. With an unsupervised, autoregressive training objective, representations learned by APC not only capture general acoustic characteristics such as speaker and phone information from the speech signals, but are also highly accessible to downstream models--our experimental results on phone classification show that a linear classifier taking the APC representations as the input features significantly outperforms a multi-layer percepron using the surface features.

Dependencies

  • Python 3.5
  • PyTorch 1.0

Dataset

In the paper, we used the train-clean-360 split from the LibriSpeech corpus for training the APC models, and the dev-clean split for keeping track of the training loss. We used the log Mel spectrograms, which were generated by running the Kaldi scripts, as the input acoustic features to the APC models. Of course you can generate the log Mel spectrograms yourself, but to help you better reproduce our results, here we provide the links to the data proprocessed by us that can be directly fed to the APC models. We also include other data splits that we did not use in the paper for you to explore, e.g., you can try training an APC model on a larger and nosier set (e.g., train-other-500) and see if it learns more robust speech representations.

Training APC

Below we will follow the paper and use train-clean-360 and dev-clean as demonstration. Once you have downloaded the data, unzip them by running:

xz -d train-clean-360.xz
xz -d dev-clean.xz

Then, create a directory librispeech_data/kaldi and move the data into it:

mkdir -p librispeech_data/kaldi
mv train-clean-360-hires-norm.blogmel librispeech_data/kaldi
mv dev-clean-hires-norm.blogmel librispeech_data/kaldi

Now we will have to transform the data into the format loadable by the PyTorch DataLoader. To do so, simply run:

# Prepare the training set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/train-clean-360-hires-norm.blogmel --save_dir librispeech_data/preprocessed/train-clean-360-hires-norm.blogmel
# Prepare the valication set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/dev-clean-hires-norm.blogmel --save_dir librispeech_data/preprocessed/dev-clean-hires-norm-blogmel

Once the program is done, you will see a directory preprocessed/ inside librispeech_data/ that contains all the preprocessed PyTorch tensors.

To train an APC model, simply run:

python train_apc.py

By default, the trained models will be put in logs/. You can also use Tensorboard to trace the training progress. There are many other configurations you can try, check train_apc.py for more details--it is highly documented and should be self-explanatory.

Feature extraction

Once you have trained your APC model, you can use it to extract speech features from your target dataset. To do so, feed-forward the trained model on the target dataset and retrieve the extracted features by running:

_, feats = model.forward(inputs, lengths)

feats is a PyTorch tensor of shape (num_layers, batch_size, seq_len, rnn_hidden_size) where:

  • num_layers is the RNN depth of your APC model
  • batch_size is your inference batch size
  • seq_len is the maximum sequence length and is determined when you run prepare_data.py. By default this value is 1600.
  • rnn_hidden_size is the dimensionality of the RNN hidden unit.

As you can see, feats is essentially the RNN hidden states in an APC model. You can think of APC as a speech version of ELMo if you are familiar with it.

There are many ways to incorporate feats into your downstream task. One of the easiest way is to take only the outputs of the last RNN layer (i.e., feats[-1, :, :, :]) as the input features to your downstream model, which is what we did in our paper. Feel free to explore other mechanisms.

Pre-trained models

We release the pre-trained models that were used to produce the numbers reported in the paper. load_pretrained_model.py provides a simple example of loading a pre-trained model.

Reference

Please cite our paper(s) if you find this repository useful. This first paper proposes the APC objective, while the second paper applies it to speech recognition, speech translation, and speaker identification, and provides more systematic analysis on the learned representations. Cite both if you are kind enough!

@inproceedings{chung2019unsupervised,
  title = {An unsupervised autoregressive model for speech representation learning},
  author = {Chung, Yu-An and Hsu, Wei-Ning and Tang, Hao and Glass, James},
  booktitle = {Interspeech},
  year = {2019}
}
@inproceedings{chung2020generative,
  title = {Generative pre-training for speech with autoregressive predictive coding},
  author = {Chung, Yu-An and Glass, James},
  booktitle = {ICASSP},
  year = {2020}
}

Contact

Feel free to shoot me an email for any inquiries about the paper and this repository.

Owner
iamyuanchung
Natural language & speech processing researcher
iamyuanchung
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022