AI drive app that can help user become beautiful.

Overview

爱美丽 Beauty

简体中文

Features

Beauty is an AI drive app that can help user become beautiful.

it contain those functions:

  1. face score cheek

  2. face beauty report

  3. face imporve proposals

  4. face comparison ( pk )

right now, it can only support asian women

and other function is under construction

The latest Android Version download:

https://gitee.com/knifecms/beauty/releases

(there is no web connection data transfer, every function works in mobile locally )

| | | | |---|---|---|

Project Introduce

1.face contour detection

use Dlib

2.face skin detection

byol + lda

3.Overall characteristics

resnet

Sub projects

  1. android beauty app

  2. deep learning face beauty research

  3. asian face leaderboard

    and leaderboard website: http://1mei.fit

Environment

  • Python 3.8

Usage in python

1.clone:

git clone https://gitee.com/knifecms/beauty.git

2.Install depend;

2.1 new install:
conda install cmake
conda install nodejs
conda install dlib
2.2 Import conda env:
conda env create -f face.yaml

3.Modify predict.py image path

# change the detect image path
test = "data/2.jpg"

4.Execute:

python predict.py

you can get beauty score in [0-5], the higher the better

5.Interpretation of results:

execute dir landmarks/ 

    1_gen_feature.py 
    
    2_prepare_data.py 
    
gen features in: data/face/features.csv

then run:

python predict_interpret.py

6.run in cam:

python predict_cam.py

7.run web service:

python predict_server.py

or run:

./restart_server.sh

preview:

http://locahost:5000/pred

we use two tech to explain result: lime and shap(recommend)

face point

face_reoprt

Todo

1.redesign the face report, do not use AI explain framework but combine small face part scores.

2.颜值解释(已添加点位和身体部位对应名称); (使用传统切割手段 和 胶囊图网络Capsule GNN 对比使用 https://github.com/benedekrozemberczki/CapsGNN https://github.com/brjathu/deepcaps )

3.use lbph in android to detect skin type

4.使用带语义结构的特征(识别特定皮肤纹理等)

5.端上应用:

由于cordova摄像头插件无法通过录像的方式捕捉人脸轮廓,暂时弃用
Android Native C++配置过于复杂,windows下与python兼容性不好

DEV:

train data:

https://github.com/HCIILAB/SCUT-FBP5500-Database-Release

Directory description:

App     	移动端项目
dl          深度神经网络训练过程
doc         文档
feature     特征处理
landmarks   人脸关键点提取过程
leaderboard 人脸排行榜
logs        日志目录
model       模型二进制文件
static      flask服务静态文件
template    flask服务模版文件
test        测试目录

ak net

reference

《女性美容美体小百科》

https://wenku.baidu.com/view/b10e711ba58da0116c1749e6.html

https://wenku.baidu.com/view/29392bbb9fc3d5bbfd0a79563c1ec5da50e2d6eb.html

https://max.book118.com/html/2017/1115/140076049.shtm

Other research progress

https://github.com/bknyaz/beauty_vision

https://github.com/ustcqidi/BeautyPredict

http://antitza.com/assessment_female_beauty.pdf

The Beauty of Capturing Faces: Rating the Quality of Digital Portraits https://arxiv.org/abs/1501.07304v1

SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction https://arxiv.org/abs/1801.06345v1

Understanding Beauty via Deep Facial Features: https://arxiv.org/pdf/1902.05380.pdf

Welcome contributions

QQ group: 740807335

wechat:

wechat

Owner
Starved Midnight
Interesting in ML
Starved Midnight
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022