Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Overview

Self-Training for Neural Sequence Generation

This repo includes instructions for running noisy self-training algorithms from the following paper:

Revisiting Self-Training for Neural Sequence Generation
Junxian He*, Jiatao Gu*, Jiajun Shen, Marc'Aurelio Ranzato
ICLR 2020

Requirement

  • fairseq (please see the fairseq repo for other requirements on Python and PyTorch versions)

fairseq can be installed with:

pip install fairseq

Data

Download and preprocess the WMT'14 En-De dataset:

# Download and prepare the data
wget https://raw.githubusercontent.com/pytorch/fairseq/master/examples/translation/prepare-wmt14en2de.sh
bash prepare-wmt14en2de.sh --icml17

TEXT=wmt14_en_de
fairseq-preprocess --source-lang en --target-lang de \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir wmt14_en_de_bin --thresholdtgt 0 --thresholdsrc 0 \
    --joined-dictionary --workers 16

Then we mimic a semi-supervised setting where 100K training samples are randomly selected as parallel corpus and the remaining English training samples are treated as unannotated monolingual corpus:

bash extract_wmt100k.sh

Preprocess WMT100K:

bash preprocess.sh 100ken 100kde 

Add noise to the monolingual corpus for later usage:

TEXT=wmt14_en_de
python paraphrase/paraphrase.py \
  --paraphraze-fn noise_bpe \
  --word-dropout 0.2 \
  --word-blank 0.2 \
  --word-shuffle 3 \
  --data-file ${TEXT}/train.mono_en \
  --output ${TEXT}/train.mono_en_noise \
  --bpe-type subword

Train the base supervised model

Train the translation model with 30K updates:

bash supervised_train.sh 100ken 100kde 30000

Self-training as pseudo-training + fine-tuning

Translate the monolingual data to train.[suffix] to form a pseudo parallel dataset:

bash translate.sh [model_path] [suffix]  

Suppose the pseduo target language suffix is mono_de_iter1 (by default), preprocess:

bash preprocess.sh mono_en_noise mono_de_iter1

Pseudo-training + fine-tuning:

bash self_train.sh mono_en_noise mono_de_iter1 

The above command trains the model on the pseduo parallel corpus formed by train.mono_en_noise and train.mono_de_iter1 and then fine-tune it on real parallel data.

This self-training process can be repeated for multiple iterations to improve performance.

Reference

@inproceedings{He2020Revisiting,
title={Revisiting Self-Training for Neural Sequence Generation},
author={Junxian He and Jiatao Gu and Jiajun Shen and Marc'Aurelio Ranzato},
booktitle={Proceedings of ICLR},
year={2020},
url={https://openreview.net/forum?id=SJgdnAVKDH}
}
Owner
Junxian He
NLP/ML PhD student at CMU
Junxian He
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022