Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

Overview

UncertaintyAwareCycleConsistency

This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness via Uncertainty-aware Cycle Consistency. Translation methods often learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty, leading to performance degradation when encountering unseen perturbations at test time. To address this, we propose a method based on Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC), which models the per-pixel residual by generalized Gaussian distribution, capable of modelling heavy-tailed distributions.

Requirements

python >= 3.6.10
pytorch >= 1.6.0
jupyter lab
torchio
scikit-image
scikit-learn

The structure of the repository is as follows:

root
 |-ckpt/ (will save all the checkpoints)
 |-data/ (save your data and related script)
 |-src/ (contains all the source code)
    |-ds.py 
    |-networks.py
    |-utils.py
    |-losses.py

Preparing Datasets

To prepare your datasets to use with this repo, place the root directory of the dataset in data/. The recommended way to structure your data is shown below.

data/
    |-Dataset_1/
        |-A/
            |-image1.png
            |-image2.png
            |-image3.png
            |-...
        |-B/
            |-image1.png
            |-image2.png
            |-image3.png
            |-...

Note the images need not be paired. The python script src/ds.py provides the PyTorch Dataset class to read such a dataset, used as explained below.

class Images_w_nameList(data.Dataset):
    '''
    can act as supervised or un-supervised based on flists
    '''
    def __init__(self, root1, root2, flist1, flist2, transform=None):

Here root1 and root2 represents the root directory for domain A and B, respectively. flist1 and flist2 contain image names for domain A and domain B. Note, if flist1 and flist2 are aligned then dataset will load paired images. To use it as unsupervised dataset loader ensure that flist1 and flist2 are not aligned.

Learning models with uncertainty

src/networks.py provides the generator and discriminator architectures.

src/utils.py provides the training API train_UGAC. The API is to train a pair of GANs, with the generators modified to predict the parameters of the generalized Gaussian distribution GGD ($\alpha$, $\beta$, $\mu$), as depicted in the above figure.

An example command to use the first API is:

#first instantiate the generators and discriminators
netG_A = CasUNet_3head(3,3)
netD_A = NLayerDiscriminator(3, n_layers=4)
netG_B = CasUNet_3head(3,3)
netD_B = NLayerDiscriminator(3, n_layers=4)

netG_A, netD_A, netG_B, netD_B = train_UGAC(
    netG_A, netG_B,
    netD_A, netD_B,
    train_loader,
    dtype=torch.cuda.FloatTensor,
    device='cuda',
    num_epochs=10,
    init_lr=1e-5,
    ckpt_path='../ckpt/ugac',
    list_of_hp = [1, 0.015, 0.01, 0.001, 1, 0.015, 0.01, 0.001, 0.05, 0.05, 0.01],
)

This will save checkpoints in ckpt/ named as ugac_eph*.pth. The arguement list_of_hp is a list of all the hyper-parameters representing weights of different weigths in the loss function.

Apart from the code in this repository, we also use the code from many other repositories like this, this, and this.

Bibtex

If you find the bits from this project helpful, please cite the following works:

Owner
EML Tübingen
Explainable Machine Learning group at University of Tübingen
EML Tübingen
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022