Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

Overview

UncertaintyAwareCycleConsistency

This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness via Uncertainty-aware Cycle Consistency. Translation methods often learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty, leading to performance degradation when encountering unseen perturbations at test time. To address this, we propose a method based on Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC), which models the per-pixel residual by generalized Gaussian distribution, capable of modelling heavy-tailed distributions.

Requirements

python >= 3.6.10
pytorch >= 1.6.0
jupyter lab
torchio
scikit-image
scikit-learn

The structure of the repository is as follows:

root
 |-ckpt/ (will save all the checkpoints)
 |-data/ (save your data and related script)
 |-src/ (contains all the source code)
    |-ds.py 
    |-networks.py
    |-utils.py
    |-losses.py

Preparing Datasets

To prepare your datasets to use with this repo, place the root directory of the dataset in data/. The recommended way to structure your data is shown below.

data/
    |-Dataset_1/
        |-A/
            |-image1.png
            |-image2.png
            |-image3.png
            |-...
        |-B/
            |-image1.png
            |-image2.png
            |-image3.png
            |-...

Note the images need not be paired. The python script src/ds.py provides the PyTorch Dataset class to read such a dataset, used as explained below.

class Images_w_nameList(data.Dataset):
    '''
    can act as supervised or un-supervised based on flists
    '''
    def __init__(self, root1, root2, flist1, flist2, transform=None):

Here root1 and root2 represents the root directory for domain A and B, respectively. flist1 and flist2 contain image names for domain A and domain B. Note, if flist1 and flist2 are aligned then dataset will load paired images. To use it as unsupervised dataset loader ensure that flist1 and flist2 are not aligned.

Learning models with uncertainty

src/networks.py provides the generator and discriminator architectures.

src/utils.py provides the training API train_UGAC. The API is to train a pair of GANs, with the generators modified to predict the parameters of the generalized Gaussian distribution GGD ($\alpha$, $\beta$, $\mu$), as depicted in the above figure.

An example command to use the first API is:

#first instantiate the generators and discriminators
netG_A = CasUNet_3head(3,3)
netD_A = NLayerDiscriminator(3, n_layers=4)
netG_B = CasUNet_3head(3,3)
netD_B = NLayerDiscriminator(3, n_layers=4)

netG_A, netD_A, netG_B, netD_B = train_UGAC(
    netG_A, netG_B,
    netD_A, netD_B,
    train_loader,
    dtype=torch.cuda.FloatTensor,
    device='cuda',
    num_epochs=10,
    init_lr=1e-5,
    ckpt_path='../ckpt/ugac',
    list_of_hp = [1, 0.015, 0.01, 0.001, 1, 0.015, 0.01, 0.001, 0.05, 0.05, 0.01],
)

This will save checkpoints in ckpt/ named as ugac_eph*.pth. The arguement list_of_hp is a list of all the hyper-parameters representing weights of different weigths in the loss function.

Apart from the code in this repository, we also use the code from many other repositories like this, this, and this.

Bibtex

If you find the bits from this project helpful, please cite the following works:

Owner
EML Tübingen
Explainable Machine Learning group at University of Tübingen
EML Tübingen
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022