A PyTorch Implementation of FaceBoxes

Overview

FaceBoxes in PyTorch

License

By Zisian Wong, Shifeng Zhang

A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The official code in Caffe can be found here.

Performance

Dataset Original Caffe PyTorch Implementation
AFW 98.98 % 98.55%
PASCAL 96.77 % 97.05%
FDDB 95.90 % 96.00%

Citation

Please cite the paper in your publications if it helps your research:

@inproceedings{zhang2017faceboxes,
  title = {Faceboxes: A CPU Real-time Face Detector with High Accuracy},
  author = {Zhang, Shifeng and Zhu, Xiangyu and Lei, Zhen and Shi, Hailin and Wang, Xiaobo and Li, Stan Z.},
  booktitle = {IJCB},
  year = {2017}
}

Contents

Installation

  1. Install PyTorch >= v1.0.0 following official instruction.

  2. Clone this repository. We will call the cloned directory as $FaceBoxes_ROOT.

git clone https://github.com/zisianw/FaceBoxes.PyTorch.git
  1. Compile the nms:
./make.sh

Note: Codes are based on Python 3+.

Training

  1. Download WIDER FACE dataset, place the images under this directory:
$FaceBoxes_ROOT/data/WIDER_FACE/images
  1. Convert WIDER FACE annotations to VOC format or download our converted annotations, place them under this directory:
$FaceBoxes_ROOT/data/WIDER_FACE/annotations
  1. Train the model using WIDER FACE:
cd $FaceBoxes_ROOT/
python3 train.py

If you do not wish to train the model, you can download our pre-trained model and save it in $FaceBoxes_ROOT/weights.

Evaluation

  1. Download the images of AFW, PASCAL Face and FDDB to:
$FaceBoxes_ROOT/data/AFW/images/
$FaceBoxes_ROOT/data/PASCAL/images/
$FaceBoxes_ROOT/data/FDDB/images/
  1. Evaluate the trained model using:
# dataset choices = ['AFW', 'PASCAL', 'FDDB']
python3 test.py --dataset FDDB
# evaluate using cpu
python3 test.py --cpu
# visualize detection results
python3 test.py -s --vis_thres 0.3
  1. Download eval_tool to evaluate the performance.

References

  • Official release (Caffe)

  • A huge thank you to SSD ports in PyTorch that have been helpful:

    Note: If you can not download the converted annotations, the provided images and the trained model through the above links, you can download them through BaiduYun.

Owner
Zi Sian Wong
Computer Vision & Deep Learning
Zi Sian Wong
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022