Classifies galaxy morphology with Bayesian CNN

Related tags

Deep Learningzoobot
Overview

Zoobot

Documentation Status

Zoobot classifies galaxy morphology with deep learning. This code will let you:

  • Reproduce and improve the Galaxy Zoo DECaLS automated classifications
  • Finetune the classifier for new tasks

For example, you can train a new classifier like so:

model = define_model.get_model(
    output_dim=len(schema.label_cols),  # schema defines the questions and answers
    input_size=initial_size, 
    crop_size=int(initial_size * 0.75),
    resize_size=resize_size
)

model.compile(
    loss=losses.get_multiquestion_loss(schema.question_index_groups),
    optimizer=tf.keras.optimizers.Adam()
)

training_config.train_estimator(
    model, 
    train_config,  # parameters for how to train e.g. epochs, patience
    train_dataset,
    test_dataset
)

Install using git and pip: git clone [email protected]:mwalmsley/zoobot.git pip install -r zoobot/requirements.txt (virtual env or conda highly recommended) pip install -e zoobot The main branch is for stable-ish releases. The dev branch includes the shiniest features but may change at any time.

To get started, see the documentation.

I also include some working examples for you to copy and adapt:

Latest cool features on dev branch (June 2021):

  • Multi-GPU distributed training
  • Support for Weights and Biases (wandb)
  • Worked examples for custom representations

Contributions are welcome and will be credited in any future work.

If you use this repo for your research, please cite the paper.

Comments
  • Benchmarks

    Benchmarks

    It's important that Zoobot has proper benchmarks so that we can be confident new releases work properly for users. This PR adds those benchmarks.

    In the course of setting up the benchmarks, I have made some major changes/improvements:

    • pytorch-galaxy-datasets refactored to work for tensorflow, imports adapted
    • both tensorflow and pytorch zoobot versions use albumentations for augmentations. Old TF code removed.
    • tensorflow version bumped to 2.10 (current latest) while I'm at it
    • pytorch version now has logging for per-question loss. Loss func aggregation has new option to support this.
    • TensorFlow version has per-question logging also, but awaiting issue with Keras team to enable
    • Created minimal_example.py for TensorFlow (thanks, @katgre )
    • Support CPU-only PyTorch training
    • Refactor TF TrainingConfig to Trainer object, Lightning style, for consistency
    enhancement 
    opened by mwalmsley 3
  • on_train_batch_end is slow in TF

    on_train_batch_end is slow in TF

    Unclear what's causing this slowness. Presumably a callback I added - but none look like they should be heavy? Perhaps something wandb is doing?

    • Remove all callbacks and rerun
    • Remove wandb and rerun For each, check if slow warning continues (or if training speed changes at all)
    enhancement 
    opened by mwalmsley 3
  • add gh action to publish package to pypi

    add gh action to publish package to pypi

    Related to https://github.com/mwalmsley/zoobot/issues/18#issuecomment-1278635788

    This PR adds an auto CI release mechanism for publishing zoobot to pypi. It uses the GH action to release to pypi https://github.com/pypa/gh-action-pypi-publish

    opened by camallen 3
  • Publish latest version to PyPi?

    Publish latest version to PyPi?

    A question rather than a request. Are there any plans to publish the refactored work ?

    PyPi shows v0.0.1 is published https://pypi.org/project/zoobot/#history on 15th March 2021 but the latest code is ~v0.0.3 (tags) and the refactor seems to be working well.

    Ideally I can pull in these packages to my own env / container and then train with the latest code vs pulling in from github etc.

    opened by camallen 3
  • setup branch protection rules on 'main'

    setup branch protection rules on 'main'

    https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/managing-a-branch-protection-rule

    It may be too restrictive for your use case / dev flows but we use this for contributor PRs etc. Basically we ensure that a PR meets certain criteria in terms of our CI runs, can only merge a PR once one of the CI runs v3.7 or v3.9 tests pass.

    Feel free to close if you don't think this is useful.

    enhancement 
    opened by camallen 2
  • Deprecate TFRecords

    Deprecate TFRecords

    TFRecords are cumbersome and take up a lot of disk space. It's much simpler to learn directly from images on disk, at the cost of some I/O performance.

    This PR removes support for TFRecords in favour of images-on-disk. This will ultimately enable new TensorFlow weights trained on all of DESI (impractical with TFRecords).

    Breaking change for anyone using TFRecords (i.e. everyone using TensorFlow to train from scratch). Finetuning should not be affected.

    TODO - will require new greyscale/colour pretrained models, just for safety.

    opened by mwalmsley 2
  • feat(CI): Add proposed python CI GH Action

    feat(CI): Add proposed python CI GH Action

    This PR proposes to add a simple GH Action script that establishes a python environment, downloads the requirements and runs pytest.

    Some other things to consider might be to use conda for virtual environments and creating CI scripts for Docker as well.

    opened by SauravMaheshkar 2
  • Improve data files for docker

    Improve data files for docker

    This PR changes the docker / compose setup, specifically it

    • consolidates the docker files to cuda and tensorflow base images (no need for a python base image)
    • adds a .dockerignore entry for all data files when building the container to keep the size down
    • and provides an easy way to inject them at run time via local directory mounts in the compose file
    • finally this removes specific to my machine local directory setup for injecting unrelated data files
    opened by camallen 2
  • add wandb logging, freeze batchnorm by default

    add wandb logging, freeze batchnorm by default

    Doing some polishing on finetuning

    • Add wandb logging to the full_tree example. @camallen use this for dashboard. You will need to add import wandb, wandb.init(authkey, etc) just before when running on Azure.
    • Freeze batch norm layers by default when finetuning, with new recursive function
    • Pass additional params via config (thanks Cam)
    • Minor cleanup
    opened by mwalmsley 1
  • Add PyTorch Finetuning Capability, Examples

    Add PyTorch Finetuning Capability, Examples

    Key change is adding pytorch.training.finetune() method. Works on either classification (e.g. 0, 1) data or count (e.g. 12 said yes, 4 said no) data.

    Includes three working examples:

    • Binary classification, with tiny rings subset
    • Counts for single question, with full internal rings data
    • Counts for all questions, with GZ Cosmic Dawn schema

    Also updates various imports for the galaxy-datasets refactor, fixes prediction method to work on unlabelled data, minor QoL improvements.

    Finally, changes PyTorch dense layer initialisation to custom high-uncertainty initialisation - see efficientnet_custom.py

    cc @camallen

    opened by mwalmsley 1
  • Add v0.02 changes

    Add v0.02 changes

    Adds support (minimal working examples, a guide) for calculating new representations with a trained model.

    Also adds significant new features:

    • Distributed training with several GPUs
    • Metric logging with Weights&Biases (add your own login credentials)
    • Train on color (3-band) images, not just greyscale

    Also adds a critical bugfix (when loading images for direct predictions i.e. not via TFRecords, correctly normalise to the 0-1 interval expected (without documentation) by the tf.keras.experimental.preprocessing layers).

    Also adds misc. minor fixes and documentation tweaks.

    This code was used for the morphology tools paper (to be submitted shortly).

    opened by mwalmsley 1
  • Avoid --extra-index-url via dependency_links

    Avoid --extra-index-url via dependency_links

    It should be possible to search for non-standard package repositories using just setup.py, without having the user also set --extra-index-url.

    https://setuptools.pypa.io/en/latest/deprecated/dependency_links.html

    But I couldn't get this to work on a quick try.

    enhancement help wanted 
    opened by mwalmsley 1
  • Can't import finetune while going through finetune_binary_classification.py

    Can't import finetune while going through finetune_binary_classification.py

    I tried to go through finetune_binary_classification.py, but got the error:

    ImportError: cannot import name 'finetune' from 'zoobot.pytorch.training' (/usr/local/lib/python3.8/dist-packages/zoobot/pytorch/training/init.py)

    I tried it both with kasia and dev branch, went through "git clone" and "pip install" (I remembered there were some issues during Hackaton regarding that), also tried to import other features from the folder (i.e. losses) and it worked fine.

    bug 
    opened by katgre 2
  • Create a simple decision tree in minimal_example.py

    Create a simple decision tree in minimal_example.py

    Instead of using on of the complicated decision trees from decals dr5, let's create a simple decision tree with one dependency already written in the minimal_example.py.

    opened by katgre 0
Releases(v0.0.3)
  • v0.0.3(Apr 25, 2022)

    Improved documentation and refactored train API (pytorch).

    Awaiting results from several segmentation experiments ahead of public release (inc pytorch version).

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Oct 4, 2021)

  • beta(Sep 29, 2021)

    Initial release.

    This had enough documentation and code to replicate the DECaLS model and make predictions. There are a few minor missing arguments and similar typos that you might have stumbled into, because I made some last minute changes without updating the docs, but everything worked with a little stack tracing.

    Source code(tar.gz)
    Source code(zip)
Owner
Mike Walmsley
Mike Walmsley
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022