Code and datasets for TPAMI 2021

Overview

SkeletonNet

This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Please download the above datasets at the first, and then put them under the SkeletonNet/sharedata folder.

Prepare Skeleton points/volumes

  • If you want to use our skeletal point cloud extraction code, you can download the skeleton extraction code. This code is built on Visual Studio2013 + Qt.
  • If you want to convert the skeletal point clouds to skeletal volumes, you can run the below scripts.
python sharedata/prepare_skeletalvolume.py --cats 03001627 --vx_res 32
python sharedata/prepare_skeletalvolume2.py --cats 03001627 --vx_res 64
python sharedata/prepare_skeletalvolume2.py --cats 03001627 --vx_res 128
python sharedata/prepare_skeletalvolume2.py --cats 03001627 --vx_res 256

Before running above scripts, you need to change raw_pointcloud_dir and upsample_skeleton_dir used when extracting skeletal points.

Installation

First you need to create an anaconda environment called SkeletonNet using

conda env create -f environment.yaml
conda activate SkeletonNet

Implementation details

For each stage, please refer to the README.md under the Skeleton_Inference/SkeGCNN/SkeDISN folder.

Pre-trained models

We provided pre-trained models of SkeletonNet, SkeGCNN, SkeDISN.

  1. The pre-trained model of SkeletonNet should be put in the folder of ./Skeleton_Inference/checkpoints/all.
  2. The pre-trained model of SkeGCNN should be put in the folder of ./SkeGCNN/checkpoint/skegcnn.
  3. The pre-trained model of SkeDISN should be put in the folder of ./SkeDISN/checkpoint/skedisn_occ.

Demo

  1. use the SkeletonNet to generate base meshes or high-resolution volumes.
cd Skeleton_Inference
bash scripts/all/demo.sh
cd ..
  1. use the SkeGCNN to bridge the explicit mesh recovery via mesh deformations.
cd SkeGCNN
bash scripts/demo.sh
cd ..
  1. use the SkeDISN to regularize the implicit mesh recovery via skeleton local features.
cd SkeDISN
bash scripts/demo.sh
cd ..

Evalation

Please refer to the README.md under the ./SkeDISN folder.

Citation

If you find this work useful in your research, please consider citing:

@InProceedings{Tang_2019_CVPR,
author = {Tang, Jiapeng and Han, Xiaoguang and Pan, Junyi and Jia, Kui and Tong, Xin},
title = {A Skeleton-Bridged Deep Learning Approach for Generating Meshes of Complex Topologies From Single RGB Images},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}

@article{tang2020skeletonnet,
  title={SkeletonNet: A Topology-Preserving Solution for Learning Mesh Reconstruction of Object Surfaces from RGB Images},
  author={Tang, Jiapeng and Han, Xiaoguang and Tan, Mingkui and Tong, Xin and Jia, Kui},
  journal={arXiv preprint arXiv:2008.05742},
  year={2020}
}

Contact

If you have any questions, please feel free to contact with Tang Jiapeng [email protected] or [email protected]

Owner
Research lab focusing on CV, ML, and AI
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022