Code and datasets for TPAMI 2021

Overview

SkeletonNet

This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Please download the above datasets at the first, and then put them under the SkeletonNet/sharedata folder.

Prepare Skeleton points/volumes

  • If you want to use our skeletal point cloud extraction code, you can download the skeleton extraction code. This code is built on Visual Studio2013 + Qt.
  • If you want to convert the skeletal point clouds to skeletal volumes, you can run the below scripts.
python sharedata/prepare_skeletalvolume.py --cats 03001627 --vx_res 32
python sharedata/prepare_skeletalvolume2.py --cats 03001627 --vx_res 64
python sharedata/prepare_skeletalvolume2.py --cats 03001627 --vx_res 128
python sharedata/prepare_skeletalvolume2.py --cats 03001627 --vx_res 256

Before running above scripts, you need to change raw_pointcloud_dir and upsample_skeleton_dir used when extracting skeletal points.

Installation

First you need to create an anaconda environment called SkeletonNet using

conda env create -f environment.yaml
conda activate SkeletonNet

Implementation details

For each stage, please refer to the README.md under the Skeleton_Inference/SkeGCNN/SkeDISN folder.

Pre-trained models

We provided pre-trained models of SkeletonNet, SkeGCNN, SkeDISN.

  1. The pre-trained model of SkeletonNet should be put in the folder of ./Skeleton_Inference/checkpoints/all.
  2. The pre-trained model of SkeGCNN should be put in the folder of ./SkeGCNN/checkpoint/skegcnn.
  3. The pre-trained model of SkeDISN should be put in the folder of ./SkeDISN/checkpoint/skedisn_occ.

Demo

  1. use the SkeletonNet to generate base meshes or high-resolution volumes.
cd Skeleton_Inference
bash scripts/all/demo.sh
cd ..
  1. use the SkeGCNN to bridge the explicit mesh recovery via mesh deformations.
cd SkeGCNN
bash scripts/demo.sh
cd ..
  1. use the SkeDISN to regularize the implicit mesh recovery via skeleton local features.
cd SkeDISN
bash scripts/demo.sh
cd ..

Evalation

Please refer to the README.md under the ./SkeDISN folder.

Citation

If you find this work useful in your research, please consider citing:

@InProceedings{Tang_2019_CVPR,
author = {Tang, Jiapeng and Han, Xiaoguang and Pan, Junyi and Jia, Kui and Tong, Xin},
title = {A Skeleton-Bridged Deep Learning Approach for Generating Meshes of Complex Topologies From Single RGB Images},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}

@article{tang2020skeletonnet,
  title={SkeletonNet: A Topology-Preserving Solution for Learning Mesh Reconstruction of Object Surfaces from RGB Images},
  author={Tang, Jiapeng and Han, Xiaoguang and Tan, Mingkui and Tong, Xin and Jia, Kui},
  journal={arXiv preprint arXiv:2008.05742},
  year={2020}
}

Contact

If you have any questions, please feel free to contact with Tang Jiapeng [email protected] or [email protected]

Owner
Research lab focusing on CV, ML, and AI
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022