Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Overview

Rotary Embeddings - Pytorch

A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional encoding. Specifically it will make rotating information into any axis of a tensor easy and efficient, whether they be fixed positional or learned. This library will give you state of the art results for positional embedding, at little costs.

My gut also tells me there is something more to rotations that can be exploited in artificial neural networks.

Install

$ pip install rotary-embedding-torch

Usage

import torch
from rotary_embedding_torch import apply_rotary_emb, RotaryEmbedding

# instantiate the positional embedding in your transformer and pass to all your attention layers

pos_emb = RotaryEmbedding(dim = 32)

# generate the rotations

freqs = pos_emb(torch.arange(1024), cache_key = 1024) # cache with a key that is the sequence length, so that it does not need to recompute

# mock queries and keys

q = torch.randn(1, 1024, 64) # queries - (batch, seq len, dimension of head)
k = torch.randn(1, 1024, 64) # keys

# apply the rotations to your queries and keys after the heads have been split out, but prior to the dot product and subsequent softmax (attention)

freqs = freqs[None, ...] # unsqueeze for batch dimension
q = apply_rotary_emb(freqs, q)
k = apply_rotary_emb(freqs, k)

# then do your attention with your queries (q) and keys (k)

If you do all the steps above correctly, you should see a dramatic improvement during training

Axial Rotary Embeddings

For easy use of 2d axial relative positional embedding, ie. vision transformers

import torch
from rotary_embedding_torch import apply_rotary_emb, RotaryEmbedding, broadcat

pos_emb = RotaryEmbedding(
    dim = 32,
    freqs_for = 'pixel'
)

# queries and keys for frequencies to be rotated into

q = torch.randn(1, 256, 256, 64)
k = torch.randn(1, 256, 256, 64)

# get frequencies for each axial
# -1 to 1 has been shown to be a good choice for images and audio

freqs_h = pos_emb(torch.linspace(-1, 1, steps = 256), cache_key = 256)
freqs_w = pos_emb(torch.linspace(-1, 1, steps = 256), cache_key = 256)

# concat the frequencies along each axial
# broadcat function makes this easy without a bunch of expands

freqs = broadcat((freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim = -1)

# rotate in frequencies

q = apply_rotary_emb(freqs, q)
k = apply_rotary_emb(freqs, k)

Learned Rotations

For injecting learned rotations into a network. Experiments pending

Update: doesn't seem to do anything -_-, will keep trying...

import torch
from torch import nn
from rotary_embedding_torch import apply_learned_rotations

x = torch.randn(1, 1024, 512)

# you can only rotate in (dim // 2) values
# ex. for 512, you can only rotate in 256 values

# say you have two sets of learned rotations of 128 values each

rots1 = nn.Linear(512, 128)(x)
rots2 = nn.Linear(512, 128)(x)

# you rotate in 256 (128 x 2) at first

x = apply_learned_rotations(rots1, x, start_index = 0)

# then you start at index 256 and rotate in the last (128 x 2)

x = apply_learned_rotations(rots2, x, start_index = 256)

# you could also concat the rotations together and pass it in all at once

rots = torch.cat((rots1, rots2), dim = -1)

x = apply_learned_rotations(rots, x)

Citations

@misc{su2021roformer,
    title   = {RoFormer: Enhanced Transformer with Rotary Position Embedding}, 
    author  = {Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
    year    = {2021},
    eprint  = {2104.09864},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
You might also like...
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Learning embeddings for classification, retrieval and ranking.
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

Improving XGBoost survival analysis with embeddings and debiased estimators
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Reliable probability face embeddings
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

 UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

🤖 A Python library for learning and evaluating knowledge graph embeddings
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Comments
  • Custom position offset when rotating queries or keys

    Custom position offset when rotating queries or keys

    This library seems to assume that queries and keys are left-aligned position-wise e.g.

    q = [p_0, p_1, p_2]
    k = [p_0, p_1, p_2, p_3, p_4]
    

    where p_i are corresponding positions. This is enforced by starting the sequence of positions always from 0 with torch.arange(seq_len) here. Applications like Perceiver AR, however, require a position-wise right-alignment e.g.

    q =           [p_2, p_3, p_4]
    k = [p_0, p_1, p_2, p_3, p_4]
    

    This pull requests allows to specify a start position for queries and or keys to enable alignments other than left-alignments. For example

    import torch
    from rotary_embedding_torch.rotary_embedding_torch import RotaryEmbedding
    
    rot = RotaryEmbedding(dim=32)
    
    q = torch.ones(1, 8, 4, 32)
    k = torch.ones(1, 8, 6, 32)
    
    q = q / torch.norm(q, dim=-1, keepdim=True)
    k = k / torch.norm(k, dim=-1, keepdim=True)
    
    q_rot = rot.rotate_queries_or_keys(q, start_pos=k.shape[2] - q.shape[2])
    k_rot = rot.rotate_queries_or_keys(k)
    
    attn = torch.einsum("b h i c, b h j c -> b h i j", q_rot, k_rot)
    print(attn[0, 0])
    

    prints the following relative position embedding

    tensor([[0.8581, 0.9571, 1.0000, 0.9571, 0.8581, 0.7670],
            [0.7670, 0.8581, 0.9571, 1.0000, 0.9571, 0.8581],
            [0.7288, 0.7670, 0.8581, 0.9571, 1.0000, 0.9571],
            [0.7361, 0.7288, 0.7670, 0.8581, 0.9571, 1.0000]])
    

    (diagonal of 1s right-aligned) whereas the default behavior

    ...
    
    q_rot = rot.rotate_queries_or_keys(q)
    k_rot = rot.rotate_queries_or_keys(k)
    
    attn = torch.einsum("b h i c, b h j c -> b h i j", q_rot, k_rot)
    print(attn[0, 0])
    

    would print

    tensor([[1.0000, 0.9571, 0.8581, 0.7670, 0.7288, 0.7361],
            [0.9571, 1.0000, 0.9571, 0.8581, 0.7670, 0.7288],
            [0.8581, 0.9571, 1.0000, 0.9571, 0.8581, 0.7670],
            [0.7670, 0.8581, 0.9571, 1.0000, 0.9571, 0.8581]])
    

    (diagonal of 1s left-aligned).

    opened by krasserm 1
  • about axial rotary embeddings

    about axial rotary embeddings

    Hi, Thank you for sharing this code with us. However, I was confused with the axial rotary embeddings in rotary_embedding_torch.py file. " elif freqs_for == 'pixel': freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi " Where does this formula come from?What parameter is max_freqs?Why the freqs is not " 1/(10000^(2i/d))"?

    Thank you again.

    opened by raindrop313 0
Owner
Phil Wang
Working with Attention
Phil Wang
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022