Fully convolutional deep neural network to remove transparent overlays from images

Overview

Warning! The architecture used in this project does not generalize well. You may want to check https://dmitryulyanov.github.io/deep_image_prior. This inpainting technique will likely give you better results.

Fully convolutional watermark removal attack

Deep learning architecture to remove transparent overlays from images.

example

Top: left is with watermark, middle is reconstruction and right is the mask the algo predicts (the neural net was never trained using text or this image)

Bottom: Pascal dataset image reconstructions. When the watermarked area is saturated, the reconstruction tends to produce a gray color.

Design choices

At train time, I generate a mask. It is a rectangle with randomly generated parameters (height, width, opacity, black/white, rotation). The mask is applied to a picture and the network is trained to find what was added. The loss is abs(prediction, image_perturbations)**1/2. It is not on the entire picture. An area around the mask is used to make the problem more tractable.

The network architecture does not down-sample the image. The prediction with a down-sampling network were not accurate enough. To have a large enough receptive field and not blow up the compute, I use dilated convolution. So concretely, I have a densenet style block, a bunch of dilated convolutions and final convolution to output a picture (3 channels). I did not spend much time doing hyper-parameters optimization. There's room to get better results using the current architecture.

Limitations: this architectures does not generalize to watermarks that are too different from the one generated with create_mask and it produces decent results only when the overlay is applied in an additive fashion.

Usage

This project uses Tensorflow. Install packages withpip install -r requirements.txt

You will need the jpeg library to compile Pillow from source: sudo apt-get install libjpeg-dev zlib1g-dev

You will also need to download the pascal dataset (used by default) from http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ or CIFAR10 python version from https://www.cs.toronto.edu/~kriz/cifar.html (use flag --dataset=dataset_cifar). Make sure the extract the pascal dataset under a directory called data. The project directory should then have the directory cifar-10-batches-py and/or data/VOCdevkit/VOC2012/JPEGImages. If you want to use your own images, place them in data/VOCdevkit/VOC2012/JPEGImages/.

To train the network python3 watermarks.py --logdir=save/. It starts to produce some interesting results after 12000 steps.

To use the network for inference, you can run python watermarks.py --image assets/cat.png --selection assets/cat-selection.png this will create a new image output.png.

Pretrained weights

Here you can find the weights: https://github.com/marcbelmont/cnn-watermark-removal/files/1594328/data.zip put them in /tmp/

Owner
Marc Belmont
Marc Belmont
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022