Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Overview

Adversarial Neuron Pruning Purifies Backdoored Deep Models

Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongxian Wu and Yisen Wang.

News

11/08/2021 - Our checkpoints and recipe have been released.

10/31/2021 - Our code has be released.

10/28/2021 - Our paper and slide have be released.

10/26/2021 - Our code and paper will be released soon.

What ANP Does

ANP can easily repair backdoored deep models using limited clean data and limited computational resources. Only 500 clean images from CIFAR-10 and 2000 iterations are used in the displayed example.

Requisite

This code is implemented in PyTorch, and we have tested the code under the following environment settings:

  • python = 3.7.3
  • torch = 1.8.0
  • torchvision = 0.9.0

A Quick Start - How to use it

For a detailed introduction, please refer to our recipe.

Step 1: Train a backdoored DNN

By default, we train a backdoored resnet-18 under badnets with 5% poison rate and class 0 as target label,

python train_backdoor_cifar.py --output-dir './save'

We save trained backdoored model and the trigger info as ./save/last_model.th and ./save/trigger_info.th. Some checkpoints have been released in Google drive or Baidu drive (pwd: bmrb).

Step 2: Optimize masks under neuron perturbations

We optimize the mask for each neuron under neuron perturbations, and save mask values in './save/mask_values.txt' . By default, we only use 500 clean data to optimize.

python optimize_mask_cifar.py --output-dir './save' --checkpoints './save/last_model.th' --trigger-info' './save/trigger_info.th'

Step 3: Prune neurons to defend

You can prune neurons by threshold,

python prune_neuron_cifar.py --output-dir './save' --mask-file './save/mask_values.txt' --checkpoints './save/last_model.th' --trigger-info' './save/trigger_info.th'

Citing this work

If you use our code, please consider cite the following: Dongxian Wu and Yisen Wang. Adversarial Neuron Pruning Purifies Backdoored Deep Models. In NeurIPS, 2021.

@inproceedings{wu2021adversarial,
    title={Adversarial Neuron Pruning Purifies Backdoored Deep Models},
    author={Dongxian Wu and Yisen Wang},
    booktitle={NeurIPS},
    year={2021}
}

If there is any problem, be free to open an issue or contact: [email protected].

Useful Links

[1] Mode Connectivity Repair (MCR) defense: https://github.com/IBM/model-sanitization/tree/master/backdoor

[2] Input-aware Backdoor (IAB) attack: https://github.com/VinAIResearch/input-aware-backdoor-attack-release

Owner
Dongxian Wu
Postdoc at University of Tokyo; PhD at Tsinghua University
Dongxian Wu
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022