Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Overview

Transfer-Learning-in-Reinforcement-Learning

Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Final Report

Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Cite this work

Nathan Beck, Abhiramon Rajasekharan, Hieu Tran, "Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations", 2021

Project description

Transfer learning approaches in reinforcement learning aim to assist agents in learning their target domains by leveraging the knowledge learned from other agents that have been trained on similar source domains. For example, recent research focus within this space has been placed on knowledge transfer between tasks that have different transition dynamics and reward functions; however, little focus has been placed on knowledge transfer between tasks that have different action spaces.

In this paper, we approach the task of transfer learning between domains that differ in action spaces. We present a reward shaping method based on source embedding similarity that is applicable to domains with both discrete and continuous action spaces. The efficacy of our approach is evaluated on transfer to restricted action spaces in the Acrobot-v1 and Pendulum-v0 domains (Brockman et al. 2016).

Our presentations

  • Presentation 1 here
  • Google Doc Folder here

Our Google Colab

https://colab.research.google.com/drive/1cQCV9Ko-prpB8sH6FlB4oj781On-ut_w?usp=sharing

Setup

  1. Clone our repository
  2. Install Gym

Using pip:

pip install gym

Or Building from Source

git clone https://github.com/openai/gym
cd gym
pip install -e .

How to run?

Run with python IDE

  1. Open main.py or main_multiple_run.py
  2. Modify env_name and algorithm that you want to run
  3. Modify parameters in transfer_execute function if needed
  4. Log will be printed out to the terminal and the plotting result will be shown on the new windows.

Run with Google Colab

Follow our sample in file Reward_Shaping_TL.ipynb to run your own colab.

Implemented Algorithms in Stable-Baseline3

Name Recurrent Box Discrete MultiDiscrete MultiBinary Multi Processing
A2C ✔️ ✔️ ✔️ ✔️ ✔️
DDPG ✔️
DQN ✔️
HER ✔️ ✔️
PPO ✔️ ✔️ ✔️ ✔️ ✔️
SAC ✔️
TD3 ✔️
QR-DQN1 ✔️
TQC1 ✔️
Maskable PPO1 ✔️ ✔️ ✔️ ✔️

1: Implemented in SB3 Contrib GitHub repository.

Actions gym.spaces:

  • Box: A N-dimensional box that containes every point in the action space.
  • Discrete: A list of possible actions, where each timestep only one of the actions can be used.
  • MultiDiscrete: A list of possible actions, where each timestep only one action of each discrete set can be used.
  • MultiBinary: A list of possible actions, where each timestep any of the actions can be used in any combination.

Refercences

  1. OpenAI Gym repo
  2. OpenAI Gym website
  3. Stable Baselines 3 repo
  4. Robotschool repo
  5. Gyem extension repos - This python package is an extension to OpenAI Gym for auxiliary tasks (multitask learning, transfer learning, inverse reinforcement learning, etc.)
  6. Example code of TL in DL repo
  7. Retro Contest - a transfer learning contest that measures a reinforcement learning algorithm’s ability to generalize from previous experience (hosted by OpenAI) link
  8. Rainbow: Combining Improvements in Deep Reinforcement Learning (repo), (paper)
  9. Experience replay (link)
  10. Solving RL classic control (link)

Related papers

  1. Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation (paper), (repo)
  2. Deep Transfer Reinforcement Learning for Text Summarization (paper),(repo)
  3. Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability (paper), (poster)
  4. Multi-Source Policy Aggregation for Transfer Reinforcement Learning between Diverse Environmental Dynamics (IJCAI 2020) (paper), (repo)
  5. Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability (paper), (poster)
  6. Deep Reinforcement Learning and Transfer Learning with Flappy Bird (paper), (poster)
  7. Decoupling Dynamics and Reward for Transfer Learning (paper), (repo)
  8. Progressive Neural Networks (paper)
  9. Deep Learning for Video Game Playing (paper)
  10. Disentangled Skill Embeddings for Reinforcement Learning (paper)
  11. Playing Atari with Deep Reinforcement Learning (paper)
  12. Dueling Network Architectures for Deep Reinforcement Learning (paper)
  13. ACTOR-MIMIC DEEP MULTITASK AND TRANSFER REINFORCEMENT LEARNING (paper)
  14. DDPG (link)

Contributors

  1. Nathan Beck [email protected]
  2. Abhiramon Rajasekharan [email protected]
  3. Trung Hieu Tran [email protected]
Owner
Trung Hieu Tran
Research Scientist @Facebook ; former @Apple
Trung Hieu Tran
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022