A plug-and-play library for neural networks written in Python

Overview

Synapses

A plug-and-play library for neural networks written in Python!

# run
pip install synapses-py==7.4.1
# in the directory of your project

Neural Network

Create a neural network

Import Synapses, call NeuralNetwork.init and provide the size of each layer.

from synapses_py import NeuralNetwork, ActivationFunction, DataPreprocessor, Statistics
layers = [4, 6, 5, 3]
neuralNetwork = NeuralNetwork.init(layers)

neuralNetwork has 4 layers. The first layer has 4 input nodes and the last layer has 3 output nodes. There are 2 hidden layers with 6 and 5 neurons respectively.

Get a prediction

inputValues = [1.0, 0.5625, 0.511111, 0.47619]
prediction = \
        NeuralNetwork.prediction(neuralNetwork, inputValues)

prediction should be something like [ 0.8296, 0.6996, 0.4541 ].

Note that the lengths of inputValues and prediction equal to the sizes of input and output layers respectively.

Fit network

learningRate = 0.5
expectedOutput = [0.0, 1.0, 0.0]
fitNetwork = \
        NeuralNetwork.fit(
            neuralNetwork,
            learningRate,
            inputValues,
            expectedOutput
        )

fitNetwork is a new neural network trained with a single observation.

To train a neural network, you should fit with multiple datapoints

Create a customized neural network

The activation function of the neurons created with NeuralNetwork.init, is a sigmoid one. If you want to customize the activation functions and the weight distribution, call NeuralNetwork.customizedInit.

def activationF(layerIndex):
    if layerIndex == 0:
        return ActivationFunction.sigmoid
    elif layerIndex == 1:
        return ActivationFunction.identity
    elif layerIndex == 2:
        return ActivationFunction.leakyReLU
    else:
        return ActivationFunction.tanh

def weightInitF(_layerIndex):
    return 1.0 - 2.0 * random()

customizedNetwork = \
        NeuralNetwork.customizedInit(
            layers,
            activationF,
            weightInitF
        )

Visualization

Call NeuralNetwork.toSvg to take a brief look at its svg drawing.

Network Drawing

The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.

svg = NeuralNetwork.toSvg(customizedNetwork)

Save and load a neural network

JSON instances are compatible across platforms! We can generate, train and save a neural network in Python and then load and make predictions in Javascript!

toJson

Call NeuralNetwork.toJson on a neural network and get a string representation of it. Use it as you like. Save json in the file system or insert into a database table.

json = NeuralNetwork.toJson(customizedNetwork)

ofJson

loadedNetwork = NeuralNetwork.ofJson(json)

As the name suggests, NeuralNetwork.ofJson turns a json string into a neural network.

Encoding and decoding

One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0. Minmax normalization scales continuous attributes into values between 0.0 and 1.0. You can use DataPreprocessor for datapoint encoding and decoding.

The first parameter of DataPreprocessor.init is a list of tuples (attributeName, discreteOrNot).

setosaDatapoint = {
    "petal_length": "1.5",
    "petal_width": "0.1",
    "sepal_length": "4.9",
    "sepal_width": "3.1",
    "species": "setosa"
}

versicolorDatapoint = {
    "petal_length": "3.8",
    "petal_width": "1.1",
    "sepal_length": "5.5",
    "sepal_width": "2.4",
    "species": "versicolor"
}

virginicaDatapoint = {
    "petal_length": "6.0",
    "petal_width": "2.2",
    "sepal_length": "5.0",
    "sepal_width": "1.5",
    "species": "virginica"
}

datasetList = [ setosaDatapoint,
                versicolorDatapoint,
                virginicaDatapoint ]

dataPreprocessor = \
        DataPreprocessor.init(
             [ ("petal_length", False),
               ("petal_width", False),
               ("sepal_length", False),
               ("sepal_width", False),
               ("species", True) ],
             iter(datasetList)
        )

encodedDatapoints = map(lambda x:
        DataPreprocessor.encodedDatapoint(dataPreprocessor, x),
        datasetList
)

encodedDatapoints equals to:

[ [ 0.0     , 0.0     , 0.0     , 1.0     , 0.0, 0.0, 1.0 ],
  [ 0.511111, 0.476190, 1.0     , 0.562500, 0.0, 1.0, 0.0 ],
  [ 1.0     , 1.0     , 0.166667, 0.0     , 1.0, 0.0, 0.0 ] ]

Save and load the preprocessor by calling DataPreprocessor.toJson and DataPreprocessor.ofJson.

Evaluation

To evaluate a neural network, you can call Statistics.rootMeanSquareError and provide the expected and predicted values.

expectedWithOutputValuesList = \
        [ ( [ 0.0, 0.0, 1.0], [ 0.0, 0.0, 1.0] ),
          ( [ 0.0, 0.0, 1.0], [ 0.0, 1.0, 1.0] ) ]

expectedWithOutputValuesIter = \
        iter(expectedWithOutputValuesList)

rmse = Statistics.rootMeanSquareError(
                        expectedWithOutputValuesIter
)
Owner
Dimos Michailidis
Dimos Michailidis
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023