Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Overview

Statutory Interpretation Data Set

This repository contains the data set created for the following research papers:

Savelka, Jaromir, and Kevin D. Ashley. "Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models." Findings of the Association for Computational Linguistics: EMNLP 2021. 2021.

Jaromir Savelka, Huihui Xu, and Kevin D. Ashley. 2019. Improving Sentence Retrieval from Case Law for Statutory Interpretation. In Seventeenth International Conference on Artificial Intelligence and Law (ICAIL ’19), June 17–21, 2019, Montreal, QC, Canada, Floris Bex (Ed.). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3322640.3326736

Task

Given a statutory provision, user's interest in the meaning of a phrase from the provision, and a list of sentences we would like to rank more highly the sentences that elaborate upon the meaning of the statutory phrase of interest, such as:

  • definitional sentences (e.g., a sentence that provides a test for when the phrase applies)
  • sentences that state explicitly in a different way what the statutory phrase means or state what it does not mean
  • sentences that provide an example, instance, or counterexample of the phrase
  • sentences that show how a court determines whether something is such an example, instance, or counterexample.

Corpus Overview

For this corpus we selected fourty two terms from different provisions of the United States Code.

For each term we have collected a set of sentences by extracting all the sentences mentioning the term from the court decisions retrieved from the Caselaw access project data.

In total the corpus consists of 26,959 sentences.

The sentences are classified into four categories according to their usefulness for the interpretation:

  • high value - sentence intended to define or elaborate on the meaning of the term
  • certain value - sentence that provides grounds to elaborate on the term's meaning
  • potential value - sentence that provides additional information beyond what is known from the provision the term comes from
  • no value - no additional information over what is known from the provision

See Annotation guidelines for additional details.

Data Structure

Each zip file contains data related to one of the fourty two queries. There are four files in total containing the texts of different granularity. These allow to replicate experiments reported in the paper cited above.

  • case
    • original_id - case id from Caselaw access project
    • name
    • short_name
    • date
    • official_date
    • official citation
    • alternate_citations
    • court
    • short_court - court abbreviation
    • jurisdiction
    • short_jurisdiction - jurisdiction abbreviation
    • attorneys
    • parties
    • judges
    • text
  • opinion
    • case_id - pointer to the case the opinion belongs to
    • author
    • type - e.g., concurrence, dissent
    • position - position of the opinion within the case
    • text
  • paragraph
    • case_id - pointer to the case the opinion belongs to
    • opinion_id - pointer to the opinion the paragraph belongs to
    • position - position of the paragraph within the opinion
    • text
  • sentence
    • case_id - pointer to the case the sentence belongs to
    • opinion_id - pointer to the opinion the sentence belongs to
    • paragraph_id - pointer to the paragraph the sentence belongs to
    • position - position of the sentence within the paragraph
    • text
    • label - human-created gold label of the sentence value

Terms of Use

For use of the data we kindly ask you to provide the two following attributions:

Savelka, Jaromir, and Kevin D. Ashley. "Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models." Findings of the Association for Computational Linguistics: EMNLP 2021. 2021.

The President and Fellows of Harvard University, Caselaw access project, Caselaw access project, 2018.

K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022