Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Overview

Certified Robustness to Adversarial Word Substitutions

This is the official GitHub repository for the following paper:

Certified Robustness to Adversarial Word Substitutions.
Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang.
Empirical Methods in Natural Language Processing (EMNLP), 2019.

For full details on reproducing the results, see this Codalab worksheet, which contains all code, data, and experiments from the paper. This GitHub repository serves as an easy way to get started with the code, and has some additional instructions and documentation.

Setup

This code has been tested with python3.6, pytorch 1.3.1, numpy 1.15.4, and NLTK 3.4.

Download data dependencies by running the provided script:

./download_deps.sh

If you already have GloVe vectors on your system, it may be more convenient to comment out the part of download_deps.sh that downloads GloVe, and instead add a symlink to the directory containing the GloVe vectors at data/glove.

Interval Bound Propagation library

We have implemented many primitives for Interval Bound Propagation (IBP), which can be found in src/ibp.py. This code should be reusable and intuitive for anyone familiar with pytorch. When designing this library, our goal was to make it possible to write code that looks like standard pytorch code, but can be trained with IBP. Below, we give an overview of the code.

BoundedTensor

BoundedTensor is our version of torch.Tensor. It represents a tensor that additionally has some bounded set of possible values. The two most important subclasses of BoundedTensor are IntervalBoundedTensor and DiscreteChoiceTensor.

IntervalBoundedTensor

An IntervalBoundedTensor keeps track of three instance variables: an actual value, a coordinate-wise upper bound on the value, and a coordinate-wise lower bound on the value. All three of these are torch.Tensor objects. It also implements many standard methods of torch.Tensor.

DiscreteChoiceTensor

A DiscreteChoiceTensor represents a tensor that can take a discrete set of values. We use DiscreteChoiceTensor to represent the set of possible word vectors that can appear at each slice of the input. Importantly, DiscreteChoiceTensor.to_interval_bounded() converts a DiscreteChoiceTensor to an IntervalBoundedTensor by taking a coordinate-wise min/max.

NormBallTensor

We also provide NormBallTensor, which represents a p-norm ball of a given radius around a value.

Functions and layers

To go with BoundedTensor, we include functions and layers that know how to take BoundedTensor objects as inputs and return BoundedTensor objects as outputs. Most of these should be straightforward to use for folks familiar with their standard torch, torch.nn, and torch.nn.functional equivalents (with a caveat that not all flags in the standard library are necessarily supported).

Functions

Available implementations of basic torch functions include:

  • add
  • mul
  • div
  • bmm
  • cat
  • stack
  • sum

In many cases, we directly call the torch counterpart if the inputs are torch.Tensor objects. A few additional cases are described below.

Activation functions

Since monotonic functions all use the same IBP formula, we export a single function ibp.activation which can apply elementwise ReLU, sigmoid, tanh, or exp to an IntervalBoundedTensor.

Logsoftmax

We include a log_softmax() function that is equivalent to torch.nn.functional.log_softmax(). We strongly advise users to use this implementation rather than implementing their own softmax operation, as numerical instability can easily arise with a naive implementation.

Nonnegative matrix multiplication

We include matmul_nneg() function that handles matrix multiplication between two non-negative matrices, as this is simpler than the general case.

Layers (nn.Module objects)

Many basic layers are implemented by extending their torch.nn counterparts, including

  • Linear
  • Embedding
  • Conv1d
  • MaxPool1d
  • LSTM
  • Dropout

RNNs

Our library also includes LSTM and GRU classes, which extend nn.Module directly. These are unfortunately slower than their torch.nn counterparts, because the torch.nn RNN's use cuDNN.

Examples

If you want to see this library in action, a good place to start is BOWModel in src/text_classification.py. This implements a simple bag-of-words model for text classification. Note that in forward(), we accept a flag called compute_bounds which lets the user decide whether to run IBP or not.

Paper experiments

In this repository, we include a minimal set of commands and instructions to reproduce a few key results from our EMNLP 2019 paper. We will focus on the CNN model results on the IMDB dataset. To see other available command line flags, you can run python src/train.py -h.

If you are interested in reproducing our experiments, we recommend looking at the aforementioned Codalab worksheet, which shows how to reproduce all results in our paper. Note that the commands on Codalab include some extra flags (--neighbor-file, --glove-dir, --imdb-dir, and --snli-dir) that are used to specify non-default paths to files. These flags are unnecessary when following the instructions in this repository.

Training

Here are commands to train the CNN model on IMDB with standard training, certifiably robust training, and data augmentation.

Standard training

To train the baseline model without IBP, run the following:

python src/train.py classification cnn outdir_cnn_normal -d 100 --pool mean -T 10 --dropout-prob 0.2 -b 32 --save-best-only

This should get about 88% accuracy on dev (but 0% certified accuracy). outdir_cnn_normal is an output directory where model parameters and stats will be saved.

Certifiably robust training

To use certifiably robust training with IBP, run the following:

python src/train.py classification cnn outdir_cnn_cert -d 100 --pool mean -T 60 --full-train-epochs 20 -c 0.8 --dropout-prob 0.2 -b 32 --save-best-only

This should get about 81% accuracy and 66% certified accuracy on dev. Note that these results do not include language model constraints on the attack surface, and therefore the certified accuracy is a bit too low. These constraints will be enforced in the testing commands below.

Training with data augmentation

To train with data augmentation, run the following:

python src/train.py classification cnn outdir_cnn_aug -d 100 --pool mean -T 60 --augment-by 4 --dropout-prob 0.2 -b 32 --save-best-only

This should get about 85% accuracy and 84% augmented accuracy on dev (but 0% certified accuracy).

Testing

Next, we will show how to test the trained models using the genetic attack. The genetic attack heuristically searches for a perturbation that causes an error. In this phase, we also incorporate pre-computed language model scores that determine which perturbations are valid.

For example, let's say we want to use the trained model inside the outdir_cnn_cert directory. First, we choose a checkpoint based on the best certified accuracy on the dev set, say checkpoint 57. (Note: the training code with --save-best-only will save only the best model and the final model; stats on all checkpoints are logged in <outdir>/all_epoch_stats.json.)

This command will run the genetic attack:

python src/train.py classification cnn eval_cnn_cert -L outdir_cnn_cert --load-ckpt 57 -d 100 --pool mean -T 0 -b 1 -a genetic --adv-num-epochs 40 --adv-pop-size 60 --use-lm --downsample-to 1000

It should get about 80% standard accuracy, 72.5% certified accuracy, and 73% adversarial accuracy (i.e., accuracy against the genetic attack). For all models, you should find that adversarial accuracy is between standard accuracy and certified accuracy. For IMDB, we downsample to 1000 examples, as the genetic attack is pretty slow; the provided precomputed LM scores (in lm_scores) are only for the first 1000 examples in the train, development, and test sets. For SNLI, we use the entire development and test sets for evaluation.

Note: This code is sensitive to the version of NLTK you use. The LM prediction files provided here should work if you are using the current version of NLTK and have updated your nltk_data directory recently. The experiments on Codalab use an older NLTK version; you can download the LM files from Codalab if you need compatibility with older NLTK versions. NLTK version issues will result in a KeyError with an Unrecognized sentence message.

Running the language model yourself

If you want to precompute language model scores on other data, use the following instructions.

  1. Clone the following git repository:
git clone https://github.com/robinjia/l2w windweller-l2w
  1. Obtain pre-trained parameters and put them in a directory named l2w-params within that repository. Please contact us if you need a copy of the parameters.

  2. Adapt src/precompute_lm_scores.py for your dataset.

PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022