Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Overview

Certified Robustness to Adversarial Word Substitutions

This is the official GitHub repository for the following paper:

Certified Robustness to Adversarial Word Substitutions.
Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang.
Empirical Methods in Natural Language Processing (EMNLP), 2019.

For full details on reproducing the results, see this Codalab worksheet, which contains all code, data, and experiments from the paper. This GitHub repository serves as an easy way to get started with the code, and has some additional instructions and documentation.

Setup

This code has been tested with python3.6, pytorch 1.3.1, numpy 1.15.4, and NLTK 3.4.

Download data dependencies by running the provided script:

./download_deps.sh

If you already have GloVe vectors on your system, it may be more convenient to comment out the part of download_deps.sh that downloads GloVe, and instead add a symlink to the directory containing the GloVe vectors at data/glove.

Interval Bound Propagation library

We have implemented many primitives for Interval Bound Propagation (IBP), which can be found in src/ibp.py. This code should be reusable and intuitive for anyone familiar with pytorch. When designing this library, our goal was to make it possible to write code that looks like standard pytorch code, but can be trained with IBP. Below, we give an overview of the code.

BoundedTensor

BoundedTensor is our version of torch.Tensor. It represents a tensor that additionally has some bounded set of possible values. The two most important subclasses of BoundedTensor are IntervalBoundedTensor and DiscreteChoiceTensor.

IntervalBoundedTensor

An IntervalBoundedTensor keeps track of three instance variables: an actual value, a coordinate-wise upper bound on the value, and a coordinate-wise lower bound on the value. All three of these are torch.Tensor objects. It also implements many standard methods of torch.Tensor.

DiscreteChoiceTensor

A DiscreteChoiceTensor represents a tensor that can take a discrete set of values. We use DiscreteChoiceTensor to represent the set of possible word vectors that can appear at each slice of the input. Importantly, DiscreteChoiceTensor.to_interval_bounded() converts a DiscreteChoiceTensor to an IntervalBoundedTensor by taking a coordinate-wise min/max.

NormBallTensor

We also provide NormBallTensor, which represents a p-norm ball of a given radius around a value.

Functions and layers

To go with BoundedTensor, we include functions and layers that know how to take BoundedTensor objects as inputs and return BoundedTensor objects as outputs. Most of these should be straightforward to use for folks familiar with their standard torch, torch.nn, and torch.nn.functional equivalents (with a caveat that not all flags in the standard library are necessarily supported).

Functions

Available implementations of basic torch functions include:

  • add
  • mul
  • div
  • bmm
  • cat
  • stack
  • sum

In many cases, we directly call the torch counterpart if the inputs are torch.Tensor objects. A few additional cases are described below.

Activation functions

Since monotonic functions all use the same IBP formula, we export a single function ibp.activation which can apply elementwise ReLU, sigmoid, tanh, or exp to an IntervalBoundedTensor.

Logsoftmax

We include a log_softmax() function that is equivalent to torch.nn.functional.log_softmax(). We strongly advise users to use this implementation rather than implementing their own softmax operation, as numerical instability can easily arise with a naive implementation.

Nonnegative matrix multiplication

We include matmul_nneg() function that handles matrix multiplication between two non-negative matrices, as this is simpler than the general case.

Layers (nn.Module objects)

Many basic layers are implemented by extending their torch.nn counterparts, including

  • Linear
  • Embedding
  • Conv1d
  • MaxPool1d
  • LSTM
  • Dropout

RNNs

Our library also includes LSTM and GRU classes, which extend nn.Module directly. These are unfortunately slower than their torch.nn counterparts, because the torch.nn RNN's use cuDNN.

Examples

If you want to see this library in action, a good place to start is BOWModel in src/text_classification.py. This implements a simple bag-of-words model for text classification. Note that in forward(), we accept a flag called compute_bounds which lets the user decide whether to run IBP or not.

Paper experiments

In this repository, we include a minimal set of commands and instructions to reproduce a few key results from our EMNLP 2019 paper. We will focus on the CNN model results on the IMDB dataset. To see other available command line flags, you can run python src/train.py -h.

If you are interested in reproducing our experiments, we recommend looking at the aforementioned Codalab worksheet, which shows how to reproduce all results in our paper. Note that the commands on Codalab include some extra flags (--neighbor-file, --glove-dir, --imdb-dir, and --snli-dir) that are used to specify non-default paths to files. These flags are unnecessary when following the instructions in this repository.

Training

Here are commands to train the CNN model on IMDB with standard training, certifiably robust training, and data augmentation.

Standard training

To train the baseline model without IBP, run the following:

python src/train.py classification cnn outdir_cnn_normal -d 100 --pool mean -T 10 --dropout-prob 0.2 -b 32 --save-best-only

This should get about 88% accuracy on dev (but 0% certified accuracy). outdir_cnn_normal is an output directory where model parameters and stats will be saved.

Certifiably robust training

To use certifiably robust training with IBP, run the following:

python src/train.py classification cnn outdir_cnn_cert -d 100 --pool mean -T 60 --full-train-epochs 20 -c 0.8 --dropout-prob 0.2 -b 32 --save-best-only

This should get about 81% accuracy and 66% certified accuracy on dev. Note that these results do not include language model constraints on the attack surface, and therefore the certified accuracy is a bit too low. These constraints will be enforced in the testing commands below.

Training with data augmentation

To train with data augmentation, run the following:

python src/train.py classification cnn outdir_cnn_aug -d 100 --pool mean -T 60 --augment-by 4 --dropout-prob 0.2 -b 32 --save-best-only

This should get about 85% accuracy and 84% augmented accuracy on dev (but 0% certified accuracy).

Testing

Next, we will show how to test the trained models using the genetic attack. The genetic attack heuristically searches for a perturbation that causes an error. In this phase, we also incorporate pre-computed language model scores that determine which perturbations are valid.

For example, let's say we want to use the trained model inside the outdir_cnn_cert directory. First, we choose a checkpoint based on the best certified accuracy on the dev set, say checkpoint 57. (Note: the training code with --save-best-only will save only the best model and the final model; stats on all checkpoints are logged in <outdir>/all_epoch_stats.json.)

This command will run the genetic attack:

python src/train.py classification cnn eval_cnn_cert -L outdir_cnn_cert --load-ckpt 57 -d 100 --pool mean -T 0 -b 1 -a genetic --adv-num-epochs 40 --adv-pop-size 60 --use-lm --downsample-to 1000

It should get about 80% standard accuracy, 72.5% certified accuracy, and 73% adversarial accuracy (i.e., accuracy against the genetic attack). For all models, you should find that adversarial accuracy is between standard accuracy and certified accuracy. For IMDB, we downsample to 1000 examples, as the genetic attack is pretty slow; the provided precomputed LM scores (in lm_scores) are only for the first 1000 examples in the train, development, and test sets. For SNLI, we use the entire development and test sets for evaluation.

Note: This code is sensitive to the version of NLTK you use. The LM prediction files provided here should work if you are using the current version of NLTK and have updated your nltk_data directory recently. The experiments on Codalab use an older NLTK version; you can download the LM files from Codalab if you need compatibility with older NLTK versions. NLTK version issues will result in a KeyError with an Unrecognized sentence message.

Running the language model yourself

If you want to precompute language model scores on other data, use the following instructions.

  1. Clone the following git repository:
git clone https://github.com/robinjia/l2w windweller-l2w
  1. Obtain pre-trained parameters and put them in a directory named l2w-params within that repository. Please contact us if you need a copy of the parameters.

  2. Adapt src/precompute_lm_scores.py for your dataset.

K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022