Evolution Strategies in PyTorch

Overview

Evolution Strategies

This is a PyTorch implementation of Evolution Strategies.

Requirements

Python 3.5, PyTorch >= 0.2.0, numpy, gym, universe, cv2

What is this? (For non-ML people)

A large class of problems in AI can be described as "Markov Decision Processes," in which there is an agent taking actions in an environment, and receiving reward, with the goal being to maximize reward. This is a very general framework, which can be applied to many tasks, from learning how to play video games to robotic control. For the past few decades, most people used Reinforcement Learning -- that is, learning from trial and error -- to solve these problems. In particular, there was an extension of the backpropagation algorithm from Supervised Learning, called the Policy Gradient, which could train neural networks to solve these problems. Recently, OpenAI had shown that black-box optimization of neural network parameters (that is, not using the Policy Gradient or even Reinforcement Learning) can achieve similar results to state of the art Reinforcement Learning algorithms, and can be parallelized much more efficiently. This repo is an implementation of that black-box optimization algorithm.

Usage

There are two neural networks provided in model.py, a small neural network meant for simple tasks with discrete observations and actions, and a larger Convnet-LSTM meant for Atari games.

Run python3 main.py --help to see all of the options and hyperparameters available to you.

Typical usage would be:

python3 main.py --small-net --env-name CartPole-v1

which will run the small network on CartPole, printing performance on every training batch. Default hyperparameters should be able to solve CartPole fairly quickly.

python3 main.py --small-net --env-name CartPole-v1 --test --restore path_to_checkpoint

which will render the environment and the performance of the agent saved in the checkpoint. Checkpoints are saved once per gradient update in training, always overwriting the old file.

python3 main.py --env-name PongDeterministic-v4 --n 10 --lr 0.01 --useAdam

which will train on Pong and produce a learning curve similar to this one:

Learning curve

This graph was produced after approximately 24 hours of training on a 12-core computer. I would expect that a more thorough hyperparameter search, and more importantly a larger batch size, would allow the network to solve the environment.

Deviations from the paper

  • I have not yet tried virtual batch normalization, but instead use the selu nonlinearity, which serves the same purpose but at a significantly reduced computational overhead. ES appears to be training on Pong quite well even with relatively small batch sizes and selu.

  • I did not pass rewards between workers, but rather sent them all to one master worker which took a gradient step and sent the new models back to the workers. If you have more cores than your batch size, OpenAI's method is probably more efficient, but if your batch size is larger than the number of cores, I think my method would be better.

  • I do not adaptively change the max episode length as is recommended in the paper, although it is provided as an option. The reasoning being that doing so is most helpful when you are running many cores in parallel, whereas I was using at most 12. Moreover, capping the episode length can severely cripple the performance of the algorithm if reward is correlated with episode length, as we cannot learn from highly-performing perturbations until most of the workers catch up (and they might not for a long time).

Tips

  • If you increase the batch size, n, you should increase the learning rate as well.

  • Feel free to stop training when you see that the unperturbed model is consistently solving the environment, even if the perturbed models are not.

  • During training you probably want to look at the rank of the unperturbed model within the population of perturbed models. Ideally some perturbation is performing better than your unperturbed model (if this doesn't happen, you probably won't learn anything useful). This requires 1 extra rollout per gradient step, but as this rollout can be computed in parallel with the training rollouts, this does not add to training time. It does, however, give us access to one less CPU core.

  • Sigma is a tricky hyperparameter to get right -- higher values of sigma will correspond to less variance in the gradient estimate, but will be more biased. At the same time, sigma is controlling the variance of our perturbations, so if we need a more varied population, it should be increased. It might be possible to adaptively change sigma based on the rank of the unperturbed model mentioned in the tip above. I tried a few simple heuristics based on this and found no significant performance increase, but it might be possible to do this more intelligently.

  • I found, as OpenAI did in their paper, that performance on Atari increased as I increased the size of the neural net.

Your code is making my computer slow help

Short answer: decrease the batch size to the number of cores in your computer, and decrease the learning rate as well. This will most likely hurt the performance of the algorithm.

Long answer: If you want large batch sizes while also keeping the number of spawned threads down, I have provided an old version in the slow_version branch which allows you to do multiple rollouts per thread, per gradient step. This code is not supported, however, and it is not recommended that you use it.

Contributions

Please feel free to make Github issues or send pull requests.

License

MIT

Owner
Andrew Gambardella
Machine Learning DPhil (PhD) student at University of Oxford
Andrew Gambardella
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022