Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Related tags

Deep Learningauto
Overview

pre-commit.ci status

Project 3 - FYS-STK4155

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.


The folder p3 contains the source code for our python package where the project required implementations are defined.

To format the code there is added a pre-commit configuration so the code follows a common standard between the members of the group. After pre-commit is installed in virtual environment or globally, activate it for this repository by running pre-commit install. It will now run configured linters and formatters each time you make a commit.

Setup using virtual environment

cd 
   
# Create a virtual environment
python -m venv venv
# Activate it
venv\Scripts\activate.bat # or on linux/mac: . venv/bin/activate
# Install the package and dependencies as an editable package in the venv
pip install -e .[dev,testing]

If you are using conda something like this should maybe work:

cd 
   
conda create --prefix ./env
conda activate ./env
pip install -e .[dev,testing]
# or maybe
conda install conda-build
conda develop . -n 
   

Running tests and check coverage

To run the tests in tests folder we use pytest and coverage, who is installed, if set-up is done as described above.

# to run tests:
(.venv)$ pytest
# to run coverage
(.venv)$ coverage run -m pytest && coverage report -m

Training

❯ python -m p3 --help
usage: __main__.py [-h] [--dataset DATASET] [--epochs EPOCHS]
                   [--batch-size BATCH_SIZE] [--lr LR]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset root. If dataset is not found at
                        location it will be downloaded to this location.
                        Default: './dataset'
  --epochs EPOCHS       train for number of epochs
  --batch-size BATCH_SIZE
                        number of samples in a batch
  --lr LR               step size during optimization
Owner
Tom-R.T.Kvalvaag
Tom-R.T.Kvalvaag
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023