Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

Overview

NPMs: Neural Parametric Models

Project Page | Paper | ArXiv | Video


NPMs: Neural Parametric Models for 3D Deformable Shapes
Pablo Palafox, Aljaz Bozic, Justus Thies, Matthias Niessner, Angela Dai

Citation

@article{palafox2021npms
    author        = {Palafox, Pablo and Bo{\v{z}}i{\v{c}}, Alja{\v{z}} and Thies, Justus and Nie{\ss}ner, Matthias and Dai, Angela},
    title         = {NPMs: Neural Parametric Models for 3D Deformable Shapes},
    journal       = {arXiv preprint arXiv:2104.00702},
    year          = {2021},
}

Install

You can either pull our docker image, build it yourself with the provided Dockerfile or build the project from source.

Pull Docker Image

docker pull ppalafox/npms:latest

You can now run an interactive container of the image you just built (before that, navigate to npms):

cd npms
docker run --ipc=host -it --name npms --gpus=all -v $PWD:/app -v /cluster:/cluster npms:latest bash

Build Docker Image

Run the following from within the root of this project (where Dockerfile lives) to build a docker image with all required dependencies.

docker build . -t npms

You can now run an interactive container of the image you just built (before that, navigate to npms):

cd npms
docker run --ipc=host -it --name npms --gpus=all -v $PWD:/app -v /cluster:/cluster npms:latest bash

Of course, you'll have to specify you're own paths to the volumes you'd like to mount using the -v flag.

Build from source

A linux system with cuda is required for the project.

The npms_env.yml file contains (hopefully) all necessary python dependencies for the project. To conveniently install them automatically with anaconda you can use:

conda env create -f npms_env.yml
conda activate npms
Other dependencies

We need some other dependencies. Starting from the root folder of this project, we'll do the following...

  • Compile the csrc folder:
cd csrc 
python setup.py install
cd ..
  • We need some libraries from IFNet. In particular, we need libmesh and libvoxelize from that repo. They are already placed within external. (Check the corresponding LICENSE). To build these, proceed as follows:
cd libmesh/
python setup.py build_ext --inplace
cd ../libvoxelize/
python setup.py build_ext --inplace
cd ..
chmod +x build_gaps.sh
./build_gaps.sh

       You can make sure it's built properly by running:

chmod +x gaps_is_installed.sh
./gaps_is_installed.sh

       You should get a "Ready to go!" as output.

You can now navigate back to the root folder: cd ..

Data Preparation

As an example, let's have a quick overview of what the process would look like in order to generate training data from the CAPE dataset.

Download their dataset, by registering and accepting their terms. Once you've followed their steps to download the dataset, you should have a folder named cape_release.

In npms/configs_train/config_train_HUMAN.py, set the variable ROOT to point to the folder where you want your data to live in. Then:

cd <ROOT>
mkdir data

And place cape_release within data.

Download SMPL models

Register here to get access to SMPL body models. Then, under the downloads tab, download the models. Refer to https://github.com/vchoutas/smplx#model-loading for more details.

From within the root folder of this project, run:

cd npms/body_model
mkdir smpl

And place the .pkl files you just downloaded under npms/body_model/smpl. Now change their names, such that you have something like:

body_models
│── smpl
│  │── smpl
│  │  └── SMPL_FEMALE.pkl
│  │  └── SMPL_MALE.pkl
│  │  └── SMPL_NEUTRAL.pkl

Preprocess the raw CAPE

Now let's process the raw data in order to generate training samples for our NPM.

cd npms/data_processing
python prepare_cape_data.py

Then, we normalize the preprocessed dataset, such that the meshes reside within a bounding box with boundaries bbox_min=-0.5 and bbox_max=0.5.

# We're within npms/data_processing
python normalize_dataset.py

At this point, we can generate training samples for both the shape and the pose MLP. An extra step would be required if our t-poses (<ROOT>/datasets/cape/a_t_pose/000000/mesh_normalized.ply) were not watertight. We'd need to run multiview_to_watertight_mesh.py. Since CAPE is already watertight, we don't need to worry about this.

About labels.json and labels_tpose.json

One last thing before actually generating the samples is to create some "labels" files that specify the paths to the dataset we wanna create. Under the folder ZSPLITS_HUMAN we have copied some examples.

Within it, you can find other folders containing datasets in the form of the paths to the actual data. For example, CAPE-SHAPE-TRAIN-35id, which in turn contains two files: labels_tpose and labels. They define datasets in a flexible way, by means of a list of dictionaries, where each dictionary holds the paths to a particular sample. You'll get a feeling of why we have a labels.json and labels_tpose.json by running the following sections to generate data, as well as when you dive into actually training a new NPM from scratch.

Go ahead and copy the folder ZSPLITS_HUMAN into <ROOT>/datasets, where ROOT is a path to your datasets that you can specify in npms/configs_train/config_train_HUMAN.py. If you followed along until now, within <ROOT>/datasets you should already have the preprocessed <ROOT>/datasets/cape dataset.

# Assuming you're in the root folder of the project
cp -r ZSPLITS_HUMAN <ROOT>/datasets

Note: within data_scripts you can find helpful scripts to generate your own labels.json and labels_tpose.json from a dataset. Check out the npms/data_scripts/README.md for a brief overview on these scripts.

SDF samples

Generate SDF samples around our identities in their t-pose in order to train the shape latent space.

# We're within npms/data_processing
python sample_boundary_sdf_gaps.py
Flow samples

Generate correspondences from an identity in its t-pose to its posed instances.

# We're within npms/data_processing
python sample_flow.py -sigma 0.01
python sample_flow.py -sigma 0.002

We're done with generating data for CAPE! This was just an example using CAPE, but as you've seen, the only thing you need to have is a dataset of meshes:

  • we need t-pose meshes for each identity in the dataset, and we can use multiview_to_watertight_mesh.py to make these t-pose meshes watertight, to then sample points and their SDF values.
  • for a given identity, we need to have surface correspondences between the t-pose and the posed meshes (but note that these posed meshes don't need to be watertight).

Training an NPM

Shape Latent Space

Set only_shape=True in config_train_HUMAN.py. Then, from within the npms folder, start the training:

python train.py

Pose Latent Space

Set only_shape=False in config_train_HUMAN.py. We now need to load the best checkpoint from training the shape MLP. For that, go to config_train_HUMAN.py, make sure init_from = True in its first appearance in the file, and then set this same variable to your pretrained model name later in the file:

init_from = "<model_name>"
checkpoint = <the_epoch_number_you_want_to_load>

Then, from within the npms folder, start the training:

python train.py

Once we reach convergence, you're done. You know have latent spaces of shape and pose that you can play with.

You could:

Fitting an NPM to a Monocular Depth Sequence

Code Initialization

When fitting an NPM to monocular depth sequence, it is recommended that we have a relatively good initialization of our shape and pose codes to avoid falling into local minima. To this end, we are gonna learn a shape and a pose encoder that map an input depth map to a shape and pose code, respectively.

We basically use the shape and pose codes that we've learned during training time as targets for training the shape and pose encoders. You can use prepare_labels_shape_encoder.py and prepare_labels_pose_encoder.py to generate the dataset labels for this encoder training.

You basically have to train them like so:

python encode_shape_codes.py
python encode_pose_codes.py

And regarding the data you need for training the encoder...

Data preparation: Take a look at the scripts voxelize_multiview.py to prepare the single-view voxel grids that we require to train our encoders.

Test-time Optimization

Now you can fit NPMs to an input monocular depth sequence:

python fit_npm.py -o -d HUMAN -e <EXTRA_NAME_IF_YOU_WANT>

The -o flag for optimize; the -d flag for the kind of dataset (HUMAN, MANO) and the -e flag for appending a string to the name of the current optimization run.

You'll have to take a look at config_eval_HUMAN.py and set the name of your trained model (exp_model) and its hyperparameters, as well as the dataset name dataset_name you want to evaluate on.

It's definitely not the cleanest and easiest config file, sorry for that!

Data preparation: Take a look at the scripts compute_partial_sdf_grid.py to prepare the single-view SDF grid that we assume as input at test-time.

Visualization

With the following script you can visualize your fitting. Have a look at config_viz_OURS.py and set the name of your trained model (exp_model) as well as the name of your optimization run (run_name) of test-time fitting you just computed.

python viz_all_methods.py -m NPM -d HUMAN

There are a bunch of other scripts for visualization. They're definitely not cleaned-up, but I kept them here anyways in case they might be useful for you as a starting point.

Compute metrics

python compute_errors.py -n <name_of_optimization_run>

Latent-space Interpolation

Check out the files:

Shape and Pose Transfer

Check out the files:

Pretrained Models

Download pre-trained models here

License

NPMs is relased under the MIT License. See the LICENSE file for more details.

Check the corresponding LICENSES of the projects under the external folder.

For instance, we make use of libmesh and libvoxelize, which come from IFNets. Please check their LICENSE.

We need some helper functions from LDIF. Namely, base_util.py and file_util.py, which should be already under utils. Check the license and copyright in those files.

Owner
PabloPalafox
PhD Student @ TU Munich w/ Angela Dai
PabloPalafox
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022