Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

Overview

NPMs: Neural Parametric Models

Project Page | Paper | ArXiv | Video


NPMs: Neural Parametric Models for 3D Deformable Shapes
Pablo Palafox, Aljaz Bozic, Justus Thies, Matthias Niessner, Angela Dai

Citation

@article{palafox2021npms
    author        = {Palafox, Pablo and Bo{\v{z}}i{\v{c}}, Alja{\v{z}} and Thies, Justus and Nie{\ss}ner, Matthias and Dai, Angela},
    title         = {NPMs: Neural Parametric Models for 3D Deformable Shapes},
    journal       = {arXiv preprint arXiv:2104.00702},
    year          = {2021},
}

Install

You can either pull our docker image, build it yourself with the provided Dockerfile or build the project from source.

Pull Docker Image

docker pull ppalafox/npms:latest

You can now run an interactive container of the image you just built (before that, navigate to npms):

cd npms
docker run --ipc=host -it --name npms --gpus=all -v $PWD:/app -v /cluster:/cluster npms:latest bash

Build Docker Image

Run the following from within the root of this project (where Dockerfile lives) to build a docker image with all required dependencies.

docker build . -t npms

You can now run an interactive container of the image you just built (before that, navigate to npms):

cd npms
docker run --ipc=host -it --name npms --gpus=all -v $PWD:/app -v /cluster:/cluster npms:latest bash

Of course, you'll have to specify you're own paths to the volumes you'd like to mount using the -v flag.

Build from source

A linux system with cuda is required for the project.

The npms_env.yml file contains (hopefully) all necessary python dependencies for the project. To conveniently install them automatically with anaconda you can use:

conda env create -f npms_env.yml
conda activate npms
Other dependencies

We need some other dependencies. Starting from the root folder of this project, we'll do the following...

  • Compile the csrc folder:
cd csrc 
python setup.py install
cd ..
  • We need some libraries from IFNet. In particular, we need libmesh and libvoxelize from that repo. They are already placed within external. (Check the corresponding LICENSE). To build these, proceed as follows:
cd libmesh/
python setup.py build_ext --inplace
cd ../libvoxelize/
python setup.py build_ext --inplace
cd ..
chmod +x build_gaps.sh
./build_gaps.sh

       You can make sure it's built properly by running:

chmod +x gaps_is_installed.sh
./gaps_is_installed.sh

       You should get a "Ready to go!" as output.

You can now navigate back to the root folder: cd ..

Data Preparation

As an example, let's have a quick overview of what the process would look like in order to generate training data from the CAPE dataset.

Download their dataset, by registering and accepting their terms. Once you've followed their steps to download the dataset, you should have a folder named cape_release.

In npms/configs_train/config_train_HUMAN.py, set the variable ROOT to point to the folder where you want your data to live in. Then:

cd <ROOT>
mkdir data

And place cape_release within data.

Download SMPL models

Register here to get access to SMPL body models. Then, under the downloads tab, download the models. Refer to https://github.com/vchoutas/smplx#model-loading for more details.

From within the root folder of this project, run:

cd npms/body_model
mkdir smpl

And place the .pkl files you just downloaded under npms/body_model/smpl. Now change their names, such that you have something like:

body_models
│── smpl
│  │── smpl
│  │  └── SMPL_FEMALE.pkl
│  │  └── SMPL_MALE.pkl
│  │  └── SMPL_NEUTRAL.pkl

Preprocess the raw CAPE

Now let's process the raw data in order to generate training samples for our NPM.

cd npms/data_processing
python prepare_cape_data.py

Then, we normalize the preprocessed dataset, such that the meshes reside within a bounding box with boundaries bbox_min=-0.5 and bbox_max=0.5.

# We're within npms/data_processing
python normalize_dataset.py

At this point, we can generate training samples for both the shape and the pose MLP. An extra step would be required if our t-poses (<ROOT>/datasets/cape/a_t_pose/000000/mesh_normalized.ply) were not watertight. We'd need to run multiview_to_watertight_mesh.py. Since CAPE is already watertight, we don't need to worry about this.

About labels.json and labels_tpose.json

One last thing before actually generating the samples is to create some "labels" files that specify the paths to the dataset we wanna create. Under the folder ZSPLITS_HUMAN we have copied some examples.

Within it, you can find other folders containing datasets in the form of the paths to the actual data. For example, CAPE-SHAPE-TRAIN-35id, which in turn contains two files: labels_tpose and labels. They define datasets in a flexible way, by means of a list of dictionaries, where each dictionary holds the paths to a particular sample. You'll get a feeling of why we have a labels.json and labels_tpose.json by running the following sections to generate data, as well as when you dive into actually training a new NPM from scratch.

Go ahead and copy the folder ZSPLITS_HUMAN into <ROOT>/datasets, where ROOT is a path to your datasets that you can specify in npms/configs_train/config_train_HUMAN.py. If you followed along until now, within <ROOT>/datasets you should already have the preprocessed <ROOT>/datasets/cape dataset.

# Assuming you're in the root folder of the project
cp -r ZSPLITS_HUMAN <ROOT>/datasets

Note: within data_scripts you can find helpful scripts to generate your own labels.json and labels_tpose.json from a dataset. Check out the npms/data_scripts/README.md for a brief overview on these scripts.

SDF samples

Generate SDF samples around our identities in their t-pose in order to train the shape latent space.

# We're within npms/data_processing
python sample_boundary_sdf_gaps.py
Flow samples

Generate correspondences from an identity in its t-pose to its posed instances.

# We're within npms/data_processing
python sample_flow.py -sigma 0.01
python sample_flow.py -sigma 0.002

We're done with generating data for CAPE! This was just an example using CAPE, but as you've seen, the only thing you need to have is a dataset of meshes:

  • we need t-pose meshes for each identity in the dataset, and we can use multiview_to_watertight_mesh.py to make these t-pose meshes watertight, to then sample points and their SDF values.
  • for a given identity, we need to have surface correspondences between the t-pose and the posed meshes (but note that these posed meshes don't need to be watertight).

Training an NPM

Shape Latent Space

Set only_shape=True in config_train_HUMAN.py. Then, from within the npms folder, start the training:

python train.py

Pose Latent Space

Set only_shape=False in config_train_HUMAN.py. We now need to load the best checkpoint from training the shape MLP. For that, go to config_train_HUMAN.py, make sure init_from = True in its first appearance in the file, and then set this same variable to your pretrained model name later in the file:

init_from = "<model_name>"
checkpoint = <the_epoch_number_you_want_to_load>

Then, from within the npms folder, start the training:

python train.py

Once we reach convergence, you're done. You know have latent spaces of shape and pose that you can play with.

You could:

Fitting an NPM to a Monocular Depth Sequence

Code Initialization

When fitting an NPM to monocular depth sequence, it is recommended that we have a relatively good initialization of our shape and pose codes to avoid falling into local minima. To this end, we are gonna learn a shape and a pose encoder that map an input depth map to a shape and pose code, respectively.

We basically use the shape and pose codes that we've learned during training time as targets for training the shape and pose encoders. You can use prepare_labels_shape_encoder.py and prepare_labels_pose_encoder.py to generate the dataset labels for this encoder training.

You basically have to train them like so:

python encode_shape_codes.py
python encode_pose_codes.py

And regarding the data you need for training the encoder...

Data preparation: Take a look at the scripts voxelize_multiview.py to prepare the single-view voxel grids that we require to train our encoders.

Test-time Optimization

Now you can fit NPMs to an input monocular depth sequence:

python fit_npm.py -o -d HUMAN -e <EXTRA_NAME_IF_YOU_WANT>

The -o flag for optimize; the -d flag for the kind of dataset (HUMAN, MANO) and the -e flag for appending a string to the name of the current optimization run.

You'll have to take a look at config_eval_HUMAN.py and set the name of your trained model (exp_model) and its hyperparameters, as well as the dataset name dataset_name you want to evaluate on.

It's definitely not the cleanest and easiest config file, sorry for that!

Data preparation: Take a look at the scripts compute_partial_sdf_grid.py to prepare the single-view SDF grid that we assume as input at test-time.

Visualization

With the following script you can visualize your fitting. Have a look at config_viz_OURS.py and set the name of your trained model (exp_model) as well as the name of your optimization run (run_name) of test-time fitting you just computed.

python viz_all_methods.py -m NPM -d HUMAN

There are a bunch of other scripts for visualization. They're definitely not cleaned-up, but I kept them here anyways in case they might be useful for you as a starting point.

Compute metrics

python compute_errors.py -n <name_of_optimization_run>

Latent-space Interpolation

Check out the files:

Shape and Pose Transfer

Check out the files:

Pretrained Models

Download pre-trained models here

License

NPMs is relased under the MIT License. See the LICENSE file for more details.

Check the corresponding LICENSES of the projects under the external folder.

For instance, we make use of libmesh and libvoxelize, which come from IFNets. Please check their LICENSE.

We need some helper functions from LDIF. Namely, base_util.py and file_util.py, which should be already under utils. Check the license and copyright in those files.

Owner
PabloPalafox
PhD Student @ TU Munich w/ Angela Dai
PabloPalafox
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
MohammadReza Sharifi 27 Dec 13, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022