Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Overview

Vending_Machine_(Mesin_Penjual_Minuman)

Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Raw Sketch untuk Essay

Ringkasan

Pada tugas besar ini, kami akan membuat suatu program yang merepresentasikan sebuah Vending Machine atau Mesin Penjual Otomatis. Mesin ini akan menerima uang, menampilkan display minuman, memberikan diskon pada situasi tertentu, mengecek uang, memberi kembalian, serta memberikan output berupa minuman kepada pembeli.

Menampilkan Display

"Sebagai penjual, kami ingin pelanggan dapat melihat barang apa saja yang tersedia pada mesin kami."

Mesin akan menampilkan display ketika ada pelanggan yang ingin membeli minuman. Mesin akan menampilkan minuman-minuman yang tersedia pada mesin termasuk Kode Minuman, Nama Minuman, dan Harga Minuman. Pada proses ini, tampilan sangat berperan penting dalam memikat hati pelanggan. Maka dari itu, kami membuat bagian display ini semenarik mungkin.

Memilih Produk

"Sebagai penjual, kami ingin para pelanggan dapat memilih produk yang ditawarkan oleh mesin."

Kami menyediakan berbagai minuman pada mesin kami. Terdapat aneka teh, kopi, dan soft drink. Minuman jenis teh kami identifikasikan dengan kode 1, minuman jenis kopi kami identifikasikan dengan kode 2, serta jenis soft drink dengan kode 3. Masing-masing jenis terdapat 3 produk berbeda misalnya pada soft drink, terdapat Sprite, Fanta, dan Coca Cola.

Ketika pelanggan sudah menentukan minuman yang ingin mereka beli, mesin akan meminta Kode Minuman kepada pelanggan. Di sini, pelanggan harus memasukkan kode dengan benar supaya Mesin Penjual Minuman dapat berjalan dengan lancar.

Verifikasi Produk

"Sebagai penjual, kami tidak ingin mengecewakan pelanggan. Salah satunya adalah ketika pelanggan tidak sengaja memasukkan kode yang salah."

Dalam hal ini, dibuatlah program untuk memverifikasi suatu produk. Ketika pelanggan sudah memasukkan Kode Minuman, mesin akan memberikan pilihan kepada pelanggan. “Anda akan membeli Fanta. Apakah Anda sudah yakin?”. Jika barang yang ingin dibeli oleh pelanggan sudah benar, pelanggan akan diarahkan untuk menekan tombol “Ya” sebagai bentuk verifikasi kepada mesin. Namun, jika pelanggan keliru memasukkan kode, maka pelanggan harus menekan tombol “Tidak”.

Memberi Diskon

"Sebagai penjual, kamu ingin memberikan diskon khusus bagi mahasiswa ITB dan FMIPA ITB."

Setelah verifikasi produk, mesin akan menanyakan satu hal dari pelanggan sebelum beralih ke pembayaran. Di sini mesin akan menanyakan apakah pelanggan adalah Mahasiswa ITB atau bukan. Jika pelanggan adalah mahasiswa ITB, mesin akan memberikan diskon sebesar 10 %. Jika pelanggan adalah mahasiswa FMIPA ITB, mesin akan memberikan diskon sebesar 40 %.

Supaya mesin dapat mengenali pelanggan, mesin akan meminta NIM dari pelanggan. Jika NIM yang dimasukkan memiliki angka 160xxxxx, maka pelanggan tersebut adalah mahasiswa FMIPA ITB. Jika NIM yang dimasukkan memiliki angka 1xxxxxxx, maka pelanggan adalah mahasiswa ITB.

Menerima Uang

"Sebagai penjual, kami menginginkan mesin yang dapat menghitung dan menerima uang. Supaya kami dapat mengambil keuntungan dari sana."

Setelah penentuan diskon, mesin kami akan menghitung jumlah uang yang harus dimasukkan oleh pelanggan. Jika pelanggan memasukkan uang dengan nominal yang kurang dari harga minuman, maka mesin akan terus meminta jumlah uang yang kurang. Namun, jika pelanggan memasukkan uang dengan nominal yang lebih, mesin akan memberi kembalian kepada pelanggan.

Catatan: Tujuannya adalah untuk membuat program yang dapat menghitung jumlah uang yang harus dibayar serta mengenali nominal uang.

Memberi Minuman

Hal terakhir yang sangat krusial adalah memberi output berupa minuman kepada pelanggan.

Mesin kami akan memberi minuman sesuai dengan kode yang sudah dimasukkan oleh pelanggan. Kami juga memberikan pesan kepada pelanggan berupa “Terima kasih telah mengunjungi Mesin Penjual Minuman Kami.” “Have a Nice Day!”.

Owner
QueenLy
Bananas without the B is just pineapples
QueenLy
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
wlad 2 Dec 19, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023