Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Overview

Vending_Machine_(Mesin_Penjual_Minuman)

Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Raw Sketch untuk Essay

Ringkasan

Pada tugas besar ini, kami akan membuat suatu program yang merepresentasikan sebuah Vending Machine atau Mesin Penjual Otomatis. Mesin ini akan menerima uang, menampilkan display minuman, memberikan diskon pada situasi tertentu, mengecek uang, memberi kembalian, serta memberikan output berupa minuman kepada pembeli.

Menampilkan Display

"Sebagai penjual, kami ingin pelanggan dapat melihat barang apa saja yang tersedia pada mesin kami."

Mesin akan menampilkan display ketika ada pelanggan yang ingin membeli minuman. Mesin akan menampilkan minuman-minuman yang tersedia pada mesin termasuk Kode Minuman, Nama Minuman, dan Harga Minuman. Pada proses ini, tampilan sangat berperan penting dalam memikat hati pelanggan. Maka dari itu, kami membuat bagian display ini semenarik mungkin.

Memilih Produk

"Sebagai penjual, kami ingin para pelanggan dapat memilih produk yang ditawarkan oleh mesin."

Kami menyediakan berbagai minuman pada mesin kami. Terdapat aneka teh, kopi, dan soft drink. Minuman jenis teh kami identifikasikan dengan kode 1, minuman jenis kopi kami identifikasikan dengan kode 2, serta jenis soft drink dengan kode 3. Masing-masing jenis terdapat 3 produk berbeda misalnya pada soft drink, terdapat Sprite, Fanta, dan Coca Cola.

Ketika pelanggan sudah menentukan minuman yang ingin mereka beli, mesin akan meminta Kode Minuman kepada pelanggan. Di sini, pelanggan harus memasukkan kode dengan benar supaya Mesin Penjual Minuman dapat berjalan dengan lancar.

Verifikasi Produk

"Sebagai penjual, kami tidak ingin mengecewakan pelanggan. Salah satunya adalah ketika pelanggan tidak sengaja memasukkan kode yang salah."

Dalam hal ini, dibuatlah program untuk memverifikasi suatu produk. Ketika pelanggan sudah memasukkan Kode Minuman, mesin akan memberikan pilihan kepada pelanggan. “Anda akan membeli Fanta. Apakah Anda sudah yakin?”. Jika barang yang ingin dibeli oleh pelanggan sudah benar, pelanggan akan diarahkan untuk menekan tombol “Ya” sebagai bentuk verifikasi kepada mesin. Namun, jika pelanggan keliru memasukkan kode, maka pelanggan harus menekan tombol “Tidak”.

Memberi Diskon

"Sebagai penjual, kamu ingin memberikan diskon khusus bagi mahasiswa ITB dan FMIPA ITB."

Setelah verifikasi produk, mesin akan menanyakan satu hal dari pelanggan sebelum beralih ke pembayaran. Di sini mesin akan menanyakan apakah pelanggan adalah Mahasiswa ITB atau bukan. Jika pelanggan adalah mahasiswa ITB, mesin akan memberikan diskon sebesar 10 %. Jika pelanggan adalah mahasiswa FMIPA ITB, mesin akan memberikan diskon sebesar 40 %.

Supaya mesin dapat mengenali pelanggan, mesin akan meminta NIM dari pelanggan. Jika NIM yang dimasukkan memiliki angka 160xxxxx, maka pelanggan tersebut adalah mahasiswa FMIPA ITB. Jika NIM yang dimasukkan memiliki angka 1xxxxxxx, maka pelanggan adalah mahasiswa ITB.

Menerima Uang

"Sebagai penjual, kami menginginkan mesin yang dapat menghitung dan menerima uang. Supaya kami dapat mengambil keuntungan dari sana."

Setelah penentuan diskon, mesin kami akan menghitung jumlah uang yang harus dimasukkan oleh pelanggan. Jika pelanggan memasukkan uang dengan nominal yang kurang dari harga minuman, maka mesin akan terus meminta jumlah uang yang kurang. Namun, jika pelanggan memasukkan uang dengan nominal yang lebih, mesin akan memberi kembalian kepada pelanggan.

Catatan: Tujuannya adalah untuk membuat program yang dapat menghitung jumlah uang yang harus dibayar serta mengenali nominal uang.

Memberi Minuman

Hal terakhir yang sangat krusial adalah memberi output berupa minuman kepada pelanggan.

Mesin kami akan memberi minuman sesuai dengan kode yang sudah dimasukkan oleh pelanggan. Kami juga memberikan pesan kepada pelanggan berupa “Terima kasih telah mengunjungi Mesin Penjual Minuman Kami.” “Have a Nice Day!”.

Owner
QueenLy
Bananas without the B is just pineapples
QueenLy
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022