Easy and Efficient Object Detector

Related tags

Deep LearningEOD
Overview

EOD

image

Easy and Efficient Object Detector

EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on provide two key feature about Object Detection:

  • Efficient: we will focus on training VERY HIGH ACCURARY single-shot detection model, and model compression (quantization/sparsity) will be well addressed.
  • Easy: easy to use, easy to add new features(backbone/head/neck), easy to deploy.
  • Large-Scale Dataset Training Detail
  • Equalized Focal Loss for Dense Long-Tailed Object Detection EFL
  • Improve-YOLOX YOLOX-RET
  • Quantization Aware Training(QAT) interface based on MQBench.

The master branch works with PyTorch 1.8.1. Due to the pytorch version, it can not well support the 30 series graphics card hardware.

Install

pip install -r requirments

Get Started

Some example scripts are supported in scripts/.

Export Module

Export eod into ROOT and PYTHONPATH

ROOT=../../
export ROOT=$ROOT
export PYTHONPATH=$ROOT:$PYTHONPATH

Train

Step1: edit meta_file and image_dir of image_reader:

dataset:
  type: coco # dataset type
    kwargs:
      source: train
      meta_file: coco/annotations/instances_train2017.json 
      image_reader:
        type: fs_opencv
        kwargs:
          image_dir: coco/train2017
          color_mode: BGR

Step2: train

python -m eod train --config configs/det/yolox/yolox_tiny.yaml --nm 1 --ng 8 --launch pytorch 2>&1 | tee log.train
  • --config: yamls in configs/
  • --nm: machine number
  • --ng: gpu number for each machine
  • --launch: slurm or pytorch

Step3: fp16, add fp16 setting into runtime config

runtime:
    fp16: True

Eval

Step1: edit config of evaluating dataset

Step2: test

python -m eod train -e --config configs/det/yolox/yolox_tiny.yaml --nm 1 --ng 1 --launch pytorch 2>&1 | tee log.test

Demo

Step1: add visualizer config in yaml

inference:
  visualizer:
    type: plt
    kwargs:
      class_names: ['__background__', 'person'] # class names
      thresh: 0.5

Step2: inference

python -m eod inference --config configs/det/yolox/yolox_tiny.yaml --ckpt ckpt_tiny.pth -i imgs -v vis_dir
  • --ckpt: model for inferencing
  • -i: images directory or single image
  • -v: directory saving visualization results

Mpirun mode

EOD supports mpirun mode to launch task, MPI needs to be installed firstly

# download mpich
wget https://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1.tar.gz # other versions: https://www.mpich.org/static/downloads/

tar -zxvf mpich-3.2.1.tar.gz
cd mpich-3.2.1
./configure  --prefix=/usr/local/mpich-3.2.1
make && make install

Launch task

mpirun -np 8 python -m eod train --config configs/det/yolox/yolox_tiny.yaml --launch mpi 2>&1 | tee log.train
  • Add mpirun -np x; x indicates number of processes
  • Mpirun is convenient to debug with pdb
  • --launch: mpi

Custom Example

Benckmark

Quick Run

Tutorials

Useful Tools

References

Acknowledgments

Thanks to all past contributors, especially opcoder,

Comments
  • Questions about EFL code implementation

    Questions about EFL code implementation

    Hello, can you answer the mechanism of action of the gradient collection function? Although the gradient gathering function is defined in the forward propagation function, it does not seem to call this function. Even if self.pos_neg.detach() is used, what is the input parameter in the collect_grad() function? Does it really work?

    image

    opened by xc-chengdu 8
  • How to use quant_runner

    How to use quant_runner

    Thank you for the excellent work of MQBench and EOD. I am interested in the work of quantization and I have tried the config of retinanet-r50_1x_quant.yaml. However, there are some errors. Besides, I found that there is no quantitative document in this project. Can you give some suggestions to use the quant_runner.

    Here are the errors I encountered when use retinanet-r50_1x_quant.yaml:

    error_1

    File "/home/user/miniconda3/envs/eod/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 59, in _wrap fn(i, *args) File "/home/user/project/EOD/eod/utils/env/launch.py", line 117, in _distributed_worker main_func(args) File "/home/user/project/EOD/eod/commands/train.py", line 121, in main runner = RUNNER_REGISTRY.get(runner_cfg['type'])(cfg, **runner_cfg['kwargs']) File "/home/user/project/EOD/eod/runner/quant_runner.py", line 14, in init super(QuantRunner, self).init(config, work_dir, training) File "/home/user/project/EOD/eod/runner/base_runner.py", line 52, in init self.build() File "/home/user/project/EOD/eod/runner/quant_runner.py", line 32, in build self.quantize_model() File "/home/user/project/EOD/eod/runner/quant_runner.py", line 68, in quantize_model from mqbench.prepare_by_platform import prepare_by_platform ImportError: cannot import name 'prepare_by_platform' from 'mqbench.prepare_by_platform' (/home/user/project/MQBench/mqbench/prepare_by_platform.py)

    solved by modifying the EOD/eod/runner/quant_runner.py 68-72:

    from mqbench.prepare_by_platform import prepare_qat_fx_by_platform
    logger.info("prepare quantize model")
    deploy_backend = self.config['quant']['deploy_backend']
    prepare_args = self.config['quant'].get('prepare_args', {})
    self.model = prepare_qat_fx_by_platform(self.model, self.backend_type[deploy_backend], prepare_args)
    

    error_2

    I can use single gpu train the quant model, but when using multiple gpus I meet the error below, which is still unsolved.

    Traceback (most recent call last): File "/home/user/miniconda3/envs/eod/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 59, in _wrap fn(i, *args) File "/home/user/project/EOD/eod/utils/env/launch.py", line 117, in _distributed_worker main_func(args) File "/home/user/project/EOD/eod/commands/train.py", line 121, in main runner = RUNNER_REGISTRY.get(runner_cfg['type'])(cfg, **runner_cfg['kwargs']) File "/home/user/project/EOD/eod/runner/quant_runner.py", line 15, in init super(QuantRunner, self).init(config, work_dir, training) File "/home/user/project/EOD/eod/runner/base_runner.py", line 52, in init self.build() File "/home/user/project/EOD/eod/runner/quant_runner.py", line 34, in build self.calibrate() File "/home/user/project/EOD/eod/runner/quant_runner.py", line 84, in calibrate self.model(batch) File "/home/user/miniconda3/envs/eod/lib/python3.8/site-packages/torch/fx/graph_module.py", line 513, in wrapped_call raise e.with_traceback(None) NameError: name 'dist' is not defined

    opened by feixiang7701 8
  • EOD/eod/models/heads/utils/bbox_helper.py

    EOD/eod/models/heads/utils/bbox_helper.py", line 341, in clip_bbox dw, dh = img_size[6], img_size[7] IndexError: list index out of range

    I found in Inferece.py the prepare are:

    def fetch_single(self, filename):
            img = self.image_reader.read(filename)
            data = EasyDict(
                {"filename": filename, "origin_image": img, "image": img, "flipped": False}
            )
            data = self.transformer(data)
            scale_factor = data.get("scale_factor", 1)
    
            image_h, image_w = get_image_size(img)
            new_image_h, new_image_w = get_image_size(data.image)
            data.image_info = [
                new_image_h,
                new_image_w,
                scale_factor,
                image_h,
                image_w,
                data.flipped,
                filename,
            ]
            data.image = data.image.cuda()
            return data
    

    which image_info max size is 7, so that above index [7] is out of indices. How to resolve?

    opened by jinfagang 5
  • no module named 'petrel_client', no module named 'spring_aux', import error No module named 'mqbench', import error No module named 'msbench.nn', free(): invalid pointer.

    no module named 'petrel_client', no module named 'spring_aux', import error No module named 'mqbench', import error No module named 'msbench.nn', free(): invalid pointer.

    Hello, 1、no module named 'petrel_client',; 2、no module named 'spring_aux',; 3、import error No module named 'mqbench'; 4、 import error No module named 'msbench.nn',; 5、free(): invalid pointer. Can you tell me how to tackle those problem?

    opened by trhao 4
  • Is sigmoid classifier suitable for multi-classification(num of categories > 1000 in LVIS) problems?

    Is sigmoid classifier suitable for multi-classification(num of categories > 1000 in LVIS) problems?

    Since you are based on the sigmoid classifier, I am curious if your detection results on LVIS will have many false positives in the same location but with different categories. The reason why I ask this is that, I used to train one-stage detector on datasets similar with LVIS (which is long tailed logo dataset, with 352 categories), however, I get many FP with different categories at the same location. I'm wondering if you have encountered the same situation. Thanks! alfaromeo5 And I think it may be due to the use of sigmoid classifier which consists of multiple independent binary classifiers. It may be not suitable for multi-classification(num of categories > 1000). Of course this is just my conjecture, any advice is welcome...

    opened by Icecream-blue-sky 4
  • [Urgent!!!]Where are kd_runner and bignas_runner? Why aren't there any branches of the warehouse? Is it because the code is not fully uploaded??????

    [Urgent!!!]Where are kd_runner and bignas_runner? Why aren't there any branches of the warehouse? Is it because the code is not fully uploaded??????

    When I tried the knowledge distillation and model search parts of the code, I had problems where kd_runner could not be found and bignas_runner could not be found, respectively. Is the warehouse code uploaded incomplete?

    opened by TheWangYang 2
  • (Resolved!!!) No module named 'petrel_client' init petrel failed No module named 'spring_aux' ImportError:  cannot import name 'gpu_iou_overlap' from 'up.extensions'.

    (Resolved!!!) No module named 'petrel_client' init petrel failed No module named 'spring_aux' ImportError: cannot import name 'gpu_iou_overlap' from 'up.extensions'.

    The following error occurs when the environment is configured and the following command is executed (the same error occurs on both Windows and Linux platforms) :

    sh scripts/dist_train.sh 2 configs/cls/resnet/resnet18.yaml
    
    No module named 'petrel_client'
    init petrel failed
    No module named 'spring_aux'
    
    2022-11-28 00:53:13,270-rk0-normalize.py#38:import error No module named 'mqbench'; If you need Mqbench to quantize model,      you should add Mqbench to this project. Or just ignore this error.
    2022-11-28 00:53:13,270-rk0-normalize.py#45:import error No module named 'msbench'; If you need Msbench to prune model,     you should add Msbench to this project. Or just ignore this error.
    
    Traceback (most recent call last):
    File "D:\anaconda3\envs\python37\lib\runpy.py", line 183, in _run_module_as_main
    mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
    File "D:\anaconda3\envs\python37\lib\runpy.py", line 142, in _get_module_details
    return _get_module_details(pkg_main_name, error)
    File "D:\anaconda3\envs\python37\lib\runpy.py", line 109, in _get_module_details
    __import__(pkg_name)
    File "D:\pycharm_work_place\United-Perception\up\__init__.py", line 26, in <module></module>
    from .tasks import *
    File "D:\pycharm_work_place\United-Perception\up\tasks\__init__.py", line 24, in <module></module>
    globals()[fp] = importlib.import_module('.' + fp, __package__)
    File "D:\anaconda3\envs\python37\lib\importlib\__init__.py", line 127, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
    File "D:\pycharm_work_place\United-Perception\up\tasks\det\__init__.py", line 2, in <module></module>
    from .models import * # noqa
    File "D:\pycharm_work_place\United-Perception\up\tasks\det\models\__init__.py", line 1, in <module></module>
    from .heads import * # noqa
    File "D:\pycharm_work_place\United-Perception\up\tasks\det\models\heads\__init__.py", line 2, in <module></module>
    from .bbox_head import *  # noqa
    File "D:\pycharm_work_place\United-Perception\up\tasks\det\models\heads\bbox_head\__init__.py", line 1, in <module></module>
    from .bbox_head import * # noqa
    File "D:\pycharm_work_place\United-Perception\up\tasks\det\models\heads\bbox_head\bbox_head.py", line 6, in <module></module>
    from up.tasks.det.models.utils.assigner import map_rois_to_level
    File "D:\pycharm_work_place\United-Perception\up\tasks\det\models\utils\__init__.py", line 3, in <module></module>
    from .matcher import * # noqa
    File "D:\pycharm_work_place\United-Perception\up\tasks\det\models\utils\matcher.py", line 6, in <module></module>
    from up.tasks.det.models.utils.bbox_helper import offset2bbox
    File "D:\pycharm_work_place\United-Perception\up\tasks\det\models\utils\bbox_helper.py", line 10, in <module></module>
    from up.extensions import gpu_iou_overlap
    
    ImportError:  cannot import name 'gpu_iou_overlap' from 'up.extensions'  (D:\pycharm_work_place\United-Perception\up\extensions\__init__.py)
    
    

    Why can't the module be imported? What should I do? I hope the kind people can help me solve the problem, I will be grateful!

    opened by TheWangYang 2
  • 'Conv2d' object has no attribute 'register_full_backward_hook'

    'Conv2d' object has no attribute 'register_full_backward_hook'

    您好,我运行样例的eval或者train都会提示这个错误,这个是和安装时编译有关吗,按说是安装成功了,感谢帮助

    Traceback (most recent call last): File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/CondaEnv/UnitedDetection/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/CondaEnv/UnitedDetection/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/main.py", line 27, in main() File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/main.py", line 21, in main args.run(args) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/commands/train.py", line 161, in _main launch(main, args.num_gpus_per_machine, args.num_machines, args=args, start_method=args.fork_method) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/utils/env/launch.py", line 68, in launch main_func(*(args,)) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/commands/train.py", line 140, in main runner = RUNNER_REGISTRY.get(runner_cfg['type'])(cfg, **runner_cfg['kwargs']) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/runner/base_runner.py", line 60, in init self.build() File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/runner/base_runner.py", line 103, in build self.build_hooks() File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/runner/base_runner.py", line 296, in build_hooks self._hooks = build_hooks(self, cfg_hooks, add_log_if_not_exists=True) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/utils/general/hook_helper.py", line 1114, in build_hooks hooks = [build_single_hook(cfg) for cfg in cfg_list] File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/utils/general/hook_helper.py", line 1114, in hooks = [build_single_hook(cfg) for cfg in cfg_list] File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/utils/general/hook_helper.py", line 1109, in build_single_hook return HOOK_REGISTRY.build(cfg) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/utils/general/registry.py", line 111, in build raise e File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/utils/general/registry.py", line 101, in build return build_fn(**obj_kwargs) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/United-Perception/up/utils/general/hook_helper.py", line 593, in init m.register_full_backward_hook(_backward_fn_hook) File "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-vacv/kaichaoliang/CondaEnv/UnitedDetection/lib/python3.7/site-packages/torch/nn/modules/module.py", line 779, in getattr type(self).name, name)) torch.nn.modules.module.ModuleAttributeError: 'Conv2d' object has no attribute 'register_full_backward_hook'

    opened by KaichaoLiang 2
  • Questions about EFL

    Questions about EFL

    作者您好,感谢您精彩的工作。我对于下图展示的EFL的公式有一个疑惑希望您能帮我解答一下: (1)您提及到对于class imbalance严重的类,gamma值应该要很大,但是同样会带来这一类对于最终loss contributions变少,所以您又加上一个weight factor,但是我在复现您代码的时候有个问题,就是您是分别计算每一类的损失然后求和,那您再计算某一类loss的时候,其他类的gamma值是怎么确定的?直接赋值为0吗?因为在您代码中您是直接乘上一个计算得到的gamma(第二个图),但是这样对于某一类而言,只是class imbalance类的gamma值非常小但是background类的gamma值却有时比较大,您可以再细化一下这个公式的解释吗,谢谢! image image

    opened by qdd1234 2
  • YOLOX QAT成功,精度无下降,但是在deploy to tengine的时候出现多个问题

    YOLOX QAT成功,精度无下降,但是在deploy to tengine的时候出现多个问题

    基于UP量化YOLOX,QAT训练成功,精度无下降,但是在deploy到tengine的时候出现多个问题, 1:miss key, 缺少量化节点 971cdb10062985847adad7eaf8c45e1

    2:fake_quantize_per_tensor_affine() received an invalid combination of arguments 导出onnx时出现参数不对应的情况,以下为报错日志 deploy_tengine_error.txt

    环境: env: Ubuntu 20.04 RTX3060TI CUDA: 11.4 Name: torch Version: 1.10.0+cu111 Name: MQBench Version: 0.0.6 onnx 1.7.0

    opened by RedHandLM 1
  • from .._C import xxx, error

    from .._C import xxx, error

    hi, i'm got the error 'ImportError: cannot import name 'naive_nms' from 'up.extensions.csrc' (unknown location)'

    e2a77bc3246af8301ca528b4df54a23c

    for the naive_nms, it's not in csrc? where it is?

    opened by EthanChen1234 1
  • BigNas demo

    BigNas demo

    opened by howardgriffin 1
  • Add resnet-ssd

    Add resnet-ssd

    Train Command :

    python -u -m up train --ng=2 --nm=1 --launch=pytorch --config=configs/det/ssd/ssd-r34-300.yaml --display=100

    Resnet34-SSD Get Result: Ave mAP: 0.253

    Resnet34-SSD 4bit asymmetry per_channel quant get result: ave mAP 0.219

    opened by wangshankun 0
  • 请问这个框架不支持蒸馏吗?

    请问这个框架不支持蒸馏吗?

    Traceback (most recent call last): File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/data/juicefs_hz_cv_v3/11105507/AAAI2022/united-perception2/up/main.py", line 31, in main() File "/data/juicefs_hz_cv_v3/11105507/AAAI2022/united-perception2/up/main.py", line 25, in main args.run(args) File "/data/juicefs_hz_cv_v3/11105507/AAAI2022/united-perception2/up/commands/train.py", line 161, in _main launch(main, args.num_gpus_per_machine, args.num_machines, args=args, start_method=args.fork_method) File "/data/juicefs_hz_cv_v3/11105507/AAAI2022/united-perception2/up/utils/env/launch.py", line 68, in launch main_func(*(args,)) File "/data/juicefs_hz_cv_v3/11105507/AAAI2022/united-perception2/up/commands/train.py", line 140, in main runner = RUNNER_REGISTRY.get(runner_cfg['type'])(cfg, **runner_cfg['kwargs']) File "/data/juicefs_hz_cv_v3/11105507/AAAI2022/united-perception2/up/utils/general/registry.py", line 81, in get assert module_name in self, '{} is not supported, avaiables are:{}'.format(module_name, self) AssertionError: kd is not supported, avaiables are:{'base': <class 'up.runner.base_runner.BaseRunner'>}

    opened by ersanliqiao 5
Releases(v0.3.0_github)
Owner
Model Infra
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022