SAMO: Streaming Architecture Mapping Optimisation

Overview

SAMO: Streaming Architecture Mapping Optimiser

The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model onto an FPGA platform for Streaming Architecture frameworks. Both a Simulated Annealing and Brute Force optimiser are implemented. We currently support the following frameworks:

Installation

You can install this package using:

python -m pip install samo

Usage

The general usage of the SAMO tool can be seen by running python -m samo --help.

Example platform configurations are given in the platforms directory and example CNN models can be generated by running python scripts/generate_networks.py.

FINN

In order to run the optimiser with the FINN toolflow, the first step is to download the following fork

git clone https://github.com/Yu-Zhewen/finn.git
cd finn
git checkout 4cc0b6fdae2f5c06f0b5bcc6fa45fba4d8b69111

As FINN requires docker, set SAMO_DIR to the path of SAMO in run_docker.sh, before entering the docker.

bash run_docker.sh

Within the docker, generate the FINN-ONNX through the following steps.

cd ../samo
cp models/${network}.onnx outputs/saved/finn/${network}.onnx
cp ../finn/notebooks/samo/config/${network}.json ../finn/notebooks/samo/config.json
jupyter nbconvert --to notebook --execute ../finn/notebooks/samo/pre_optimiser_steps.ipynb
mv ../finn/notebooks/samo/pre_optimiser_steps.nbconvert.ipynb outputs/saved/finn/${network}_pre_optimiser_steps.nbconvert.ipynb

To optimise the CNN model in the FINN-ONNX format, you need to do:

python -m samo --optimiser annealing --model outputs/saved/finn/${network}_pre_optimiser.onnx  \
    --backend finn --platform platforms/zedboard.json \
    --output-path outputs/saved/finn/${network}_post_optimiser.onnx

Finally, the following command is used to generate the hardware.

jupyter nbconvert --to notebook --execute ../finn/notebooks/samo/post_optimiser_steps.ipynb

HLS4ML

This tool can be used to generate optimised designs for the HLS4ML framework. SAMO tunes the reuse-factor for layers of the CNN model, and generates a Resource driven design.

To optimise a keras model for a given platform, run the following:

python -m samo --optimiser annealing --model models/model.keras \
    --backend hls4ml --platform platforms/zedboard.json \
    --output-path outputs/model_hls4ml.json

The previous command generates a configuration file (outputs/model_hls4ml.json), which can be used by the HLS4ML to generate hardware. To do this, you will need to use the HLS4ML API to convert this configuration file into a HLS project.

import hls4ml
from tensorflow import keras

# load the configuration
with open("outputs/model_hls4ml.json", "r") as f:
    config = json.load(f)

# load the platform
with open("platforms/zedboard.json", "r") as f:
    platform = json.load(f)

# load the keras model
model = keras.models.load_model("models/model.keras")

# create the hls model
hls_model = hls4ml.converters.convert_from_keras_model(model, hls_config=config,
        output_dir="outputs/hls4ml_prj",  io_type="io_stream", fpga_part=platform["part"])

# build the HLS project
hls_model.build(csim=True, cosim=True)

Feel free to post an issue if you have any questions or problems!

Owner
Alexander Montgomerie-Corcoran
PhD Student at Imperial College London
Alexander Montgomerie-Corcoran
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022