AI grand challenge 2020 Repo (Speech Recognition Track)

Overview

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지)

본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다.

본 개발자들이 참여한 2020 인공지능 그랜드 챌린지 4차 대회는 인공지능 기술을 활용하여 다양한 지역사회의 국민생활 및 사회현안을 대응하는 과제입니다. 그중 음성인지 트랙은 음성 클립에서 위협상황을 검출하고 해당 위협 상황을 구분하는 것이 목표로 하고 있습니다. 아래의 표는 본 대회에서 정의한 4가지의 폭력 Class이며 아래의 4가지 폭력 Class 외에 비폭력 Class가 추가되어 총 5개 Class의 폭력 또는 비폭력을 분류하는 것이 주된 목적입니다.

< 음성인지 분류대상 정의 >

추가적으로, 본 개발자들은 ETRI에서 작성된 사용협약서에 준수하여 pretrained 모델 및 정보에 관한 내용은 공개하지 않습니다. 해당 프로젝트를 쉽게 활용하기 위해서는 ETRI에서 제공하는 API를 활용하시면 되며, 다음 링크에서 서약서를 작성 후 키와 코드를 다운받으시면 되십니다. 본 프로젝트는 대회에서 적용한 여러 분류 모델들을 제공하며 앞서 다운로드한 ETRI에서 제공된 형태소 분석기와 토큰화를 사용하여 쉽게 실습할 수 있습니다.

분류 모델

Requirements

Python 3.7

Pytorch == 1.5.0

boto3

botocore

tqdm

requests

Models

본 프로젝트는 4가지의 분류 모델(MLP, CNN, LSTM, Bi-LSTM)을 활용하였습니다. 아래는 활용된 모델들의 전체적인 시나리오를 보여주는 개요도입니다.

1. MLP

< 활용된 MLP 모델 >

2. CNN

CNN은 해당 논문을 참고하였습니다. 더 자세한 내용은 논문에서 확인할 수 있습니다.

< 활용된 CNN 모델 >

3. LSTM

< 활용된 LSTM 모델 >

4. Bi-LSTM

< 활용된 Bi-LSTM 모델 >

Results

본 대회에서는 분류 결과를 Macro-F1 score에 의해 평가하였으며, Macro-F1 score는 아래와 같이 정의합니다. 이때, i는 각각의 폭력 및 비폭력 Class를 의미합니다.

< Macro-F1 Score >

위 식을 토대로, 저희의 분류 아래의 결과는 2020 인공지능 그랜드 챌린지 4차 대회 음성인지 트랙에서 본 팀에 대한 결과이며, 주최 측에서 테스트 데이터는 공개하지 않아 확인할 수 없습니다.

Model MLP [1] CNN [2] LSTM [3] Bi-LSTM [4]
Macro F1-Score 0.7029 0.615 0.7157 0.6935
Owner
Young-Seok Choi
Young-Seok Choi
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022