AI grand challenge 2020 Repo (Speech Recognition Track)

Overview

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지)

본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다.

본 개발자들이 참여한 2020 인공지능 그랜드 챌린지 4차 대회는 인공지능 기술을 활용하여 다양한 지역사회의 국민생활 및 사회현안을 대응하는 과제입니다. 그중 음성인지 트랙은 음성 클립에서 위협상황을 검출하고 해당 위협 상황을 구분하는 것이 목표로 하고 있습니다. 아래의 표는 본 대회에서 정의한 4가지의 폭력 Class이며 아래의 4가지 폭력 Class 외에 비폭력 Class가 추가되어 총 5개 Class의 폭력 또는 비폭력을 분류하는 것이 주된 목적입니다.

< 음성인지 분류대상 정의 >

추가적으로, 본 개발자들은 ETRI에서 작성된 사용협약서에 준수하여 pretrained 모델 및 정보에 관한 내용은 공개하지 않습니다. 해당 프로젝트를 쉽게 활용하기 위해서는 ETRI에서 제공하는 API를 활용하시면 되며, 다음 링크에서 서약서를 작성 후 키와 코드를 다운받으시면 되십니다. 본 프로젝트는 대회에서 적용한 여러 분류 모델들을 제공하며 앞서 다운로드한 ETRI에서 제공된 형태소 분석기와 토큰화를 사용하여 쉽게 실습할 수 있습니다.

분류 모델

Requirements

Python 3.7

Pytorch == 1.5.0

boto3

botocore

tqdm

requests

Models

본 프로젝트는 4가지의 분류 모델(MLP, CNN, LSTM, Bi-LSTM)을 활용하였습니다. 아래는 활용된 모델들의 전체적인 시나리오를 보여주는 개요도입니다.

1. MLP

< 활용된 MLP 모델 >

2. CNN

CNN은 해당 논문을 참고하였습니다. 더 자세한 내용은 논문에서 확인할 수 있습니다.

< 활용된 CNN 모델 >

3. LSTM

< 활용된 LSTM 모델 >

4. Bi-LSTM

< 활용된 Bi-LSTM 모델 >

Results

본 대회에서는 분류 결과를 Macro-F1 score에 의해 평가하였으며, Macro-F1 score는 아래와 같이 정의합니다. 이때, i는 각각의 폭력 및 비폭력 Class를 의미합니다.

< Macro-F1 Score >

위 식을 토대로, 저희의 분류 아래의 결과는 2020 인공지능 그랜드 챌린지 4차 대회 음성인지 트랙에서 본 팀에 대한 결과이며, 주최 측에서 테스트 데이터는 공개하지 않아 확인할 수 없습니다.

Model MLP [1] CNN [2] LSTM [3] Bi-LSTM [4]
Macro F1-Score 0.7029 0.615 0.7157 0.6935
Owner
Young-Seok Choi
Young-Seok Choi
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022