Best practices for segmentation of the corporate network of any company

Overview

Anurag's GitHub stats

Best-practice-for-network-segmentation

What is this?

This project was created to publish the best practices for segmentation of the corporate network of any company. In general, the schemes in this project are suitable for any company.

Where can I find diagrams?

Graphic diagrams are available in the Release page
The schema sources are located in the repository

Schematic symbols

Elements used in network diagrams:
Schematic symbols
Crossing the border of the rectangle means crossing the firewall.

Level 1 of network segmentation: basic segmentation

Level 1

Advantages

Basic segmentation to protect against basic targeted attacks that make it difficult for an attacker to advance on the network. Basic isolation of the productive environment from the corporate one.

Disadvantages

The default corporate network should be considered potentially compromised. Potentially compromised workstations of ordinary workers, as well as workstations of administrators, have basic and administrative access to the production network.

In this regard, the compromise of any workstation can theoretically lead to the exploitation of the following attack vector. An attacker compromises a workstation in the corporate network. Further, the attacker either elevates privileges in the corporate network or immediately attacks the production network with the rights that the attacker had previously obtained.

Attack vector protection:

Installation the maximum number of information protection tools, real time monitoring suspicious events and immediate response.
OR!
Segmentation according to level 2 requirements

Level 2 of network segmentation: adoption of basic security practices

Level 2

Advantages

More network segments in the corporate network.
Full duplication of the main supporting infrastructure for production network such as:

  1. mail relays;
  2. time servers;
  3. other services, if available.

Safer software development. Recommended implementing DevSecOps at least Level 1 of the DSOMM, what requires the introduction of a separate storage of secrets for passwords, tokens, cryptographic keys, logins, etc., additional servers for SAST, DAST, fuzzing, SCA and another DevSecOps tools. In case of problems in the supporting infrastructure in the corporate segment, this will not affect the production environment. It is a little harder for an attacker to compromise a production environment.
Or you can implement at least Level 2 of the SLSA.

Disadvantages

As a result, this leads to the following problems:

  1. increasing the cost of ownership and the cost of final services to customers;
  2. high complexity of maintenance.

If u like it?

Please subscribe - this is free support for the project image

Level 3 of network segmentation: high adoption of security practices

The company's management (CEO) understands the role of cybersecurity in the life of the company. Information security risk becomes one of the company's operational risks. Depending on the size of the company, the minimum size of an information security unit is 15-20 employees. Level 3

Advantages

Implementing security services such us:

  1. security operation center (SIEM, IRP, SOAR, SGRC);
  2. data leak prevention;
  3. phishing protection;
  4. sandbox;
  5. intrusion prevention system;
  6. vulnerability scanner;
  7. endpoint protection;
  8. web application firewall;
  9. backup server.

Disadvantages

High costs of information security tools and information security specialists

Level 4 of network segmentation: advanced deployment of security practices at scale

Each production and corporate services has its own networks: Tier I, Tier II, Tier III.

The production environment is accessed from isolated computers. Each isolated computer does not have:

  1. incoming accesses from anywhere except from remote corporate laptops via VPN;
  2. outgoing access to the corporate network:
    • no access to the mail service - the threat of spear phishing is not possible;
    • there is no access to internal sites and services - it is impossible to download a trojan from a compromised corporate networks.

🔥 Only one way to compromise an isolated computer is to compromise the production environment. As a result, a successful compromise of a computer, even by phishing, will prevent a hacker from gaining access to a production environment.

Implement other possible security services, such as:

  1. privileged access management;
  2. internal phishing training server;
  3. compliance server (configuration assessment).

Level 4

Advantages

Implementing security services such us:

  1. privileged access management;
  2. internal phishing training server;
  3. compliance server (configuration assessment);
  4. strong protection of your production environment from spear phishing.

🔥 Now the attacker will not be able to attack the production network, because now a potentially compromised workstation in the corporate network basically does not have network access to the production. Related problems:

  1. separate workstations for access to the production network - yes, now you will have 2 computers on your desktop.
  2. other LDAP catalog or Domain controller for production network;
  3. firewall analyzer, network equipment analyzer;
  4. netflow analyzer.

Disadvantages

Now you will have 2 computers on your desktop if you need access to production network. It hurts 😀

Support the project

Please subscribe - this is free support for the project

Have an idea for improvement?

You might also like...
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

Code for
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

A best practice for tensorflow project template architecture.
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Comments
  • WSUS Server Terminology

    WSUS Server Terminology

    WSUS no longer uses the master/slave terminology. Instead use upstream & downstream servers.

    https://docs.microsoft.com/en-us/windows-server/administration/windows-server-update-services/plan/plan-your-wsus-deployment

    bug 
    opened by LinealJoe 2
  • Add Social preview

    Add Social preview

    Add Social preview Upload an image to customize your repository’s social media preview.

    Images should be at least 640×320px (1280×640px for best display). Download template

    enhancement 
    opened by sergiomarotco 1
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    Beep boop. Your images are optimized!

    Your image file size has been reduced by 9% 🎉

    Details

    | File | Before | After | Percent reduction | |:--|:--|:--|:--| | /Other/Powtoon_GIF.gif | 561.10kb | 507.21kb | 9.61% | | /Schematic symbols/Schematic symbols.jpg | 63.88kb | 61.17kb | 4.24% | | | | | | | Total : | 624.98kb | 568.38kb | 9.06% |


    📝 docs | :octocat: repo | 🙋🏾 issues | 🏪 marketplace

    ~Imgbot - Part of Optimole family

    opened by imgbot[bot] 0
  • Level 4 with one computer (Privileged Access Workstation)

    Level 4 with one computer (Privileged Access Workstation)

    Level four can be achieved with only one physical computer on your desktop. One can use virtual machines and call it a Privileged Access Workstation: https://techcommunity.microsoft.com/t5/data-center-security/privileged-access-workstation-paw/ba-p/372274

    It hurts a little less than two physical computers. ;)

    good first issue 
    opened by C0FFEEC0FFEE 7
Releases(4.1.3)
Owner
Security evangelist
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023