Best practices for segmentation of the corporate network of any company

Overview

Anurag's GitHub stats

Best-practice-for-network-segmentation

What is this?

This project was created to publish the best practices for segmentation of the corporate network of any company. In general, the schemes in this project are suitable for any company.

Where can I find diagrams?

Graphic diagrams are available in the Release page
The schema sources are located in the repository

Schematic symbols

Elements used in network diagrams:
Schematic symbols
Crossing the border of the rectangle means crossing the firewall.

Level 1 of network segmentation: basic segmentation

Level 1

Advantages

Basic segmentation to protect against basic targeted attacks that make it difficult for an attacker to advance on the network. Basic isolation of the productive environment from the corporate one.

Disadvantages

The default corporate network should be considered potentially compromised. Potentially compromised workstations of ordinary workers, as well as workstations of administrators, have basic and administrative access to the production network.

In this regard, the compromise of any workstation can theoretically lead to the exploitation of the following attack vector. An attacker compromises a workstation in the corporate network. Further, the attacker either elevates privileges in the corporate network or immediately attacks the production network with the rights that the attacker had previously obtained.

Attack vector protection:

Installation the maximum number of information protection tools, real time monitoring suspicious events and immediate response.
OR!
Segmentation according to level 2 requirements

Level 2 of network segmentation: adoption of basic security practices

Level 2

Advantages

More network segments in the corporate network.
Full duplication of the main supporting infrastructure for production network such as:

  1. mail relays;
  2. time servers;
  3. other services, if available.

Safer software development. Recommended implementing DevSecOps at least Level 1 of the DSOMM, what requires the introduction of a separate storage of secrets for passwords, tokens, cryptographic keys, logins, etc., additional servers for SAST, DAST, fuzzing, SCA and another DevSecOps tools. In case of problems in the supporting infrastructure in the corporate segment, this will not affect the production environment. It is a little harder for an attacker to compromise a production environment.
Or you can implement at least Level 2 of the SLSA.

Disadvantages

As a result, this leads to the following problems:

  1. increasing the cost of ownership and the cost of final services to customers;
  2. high complexity of maintenance.

If u like it?

Please subscribe - this is free support for the project image

Level 3 of network segmentation: high adoption of security practices

The company's management (CEO) understands the role of cybersecurity in the life of the company. Information security risk becomes one of the company's operational risks. Depending on the size of the company, the minimum size of an information security unit is 15-20 employees. Level 3

Advantages

Implementing security services such us:

  1. security operation center (SIEM, IRP, SOAR, SGRC);
  2. data leak prevention;
  3. phishing protection;
  4. sandbox;
  5. intrusion prevention system;
  6. vulnerability scanner;
  7. endpoint protection;
  8. web application firewall;
  9. backup server.

Disadvantages

High costs of information security tools and information security specialists

Level 4 of network segmentation: advanced deployment of security practices at scale

Each production and corporate services has its own networks: Tier I, Tier II, Tier III.

The production environment is accessed from isolated computers. Each isolated computer does not have:

  1. incoming accesses from anywhere except from remote corporate laptops via VPN;
  2. outgoing access to the corporate network:
    • no access to the mail service - the threat of spear phishing is not possible;
    • there is no access to internal sites and services - it is impossible to download a trojan from a compromised corporate networks.

🔥 Only one way to compromise an isolated computer is to compromise the production environment. As a result, a successful compromise of a computer, even by phishing, will prevent a hacker from gaining access to a production environment.

Implement other possible security services, such as:

  1. privileged access management;
  2. internal phishing training server;
  3. compliance server (configuration assessment).

Level 4

Advantages

Implementing security services such us:

  1. privileged access management;
  2. internal phishing training server;
  3. compliance server (configuration assessment);
  4. strong protection of your production environment from spear phishing.

🔥 Now the attacker will not be able to attack the production network, because now a potentially compromised workstation in the corporate network basically does not have network access to the production. Related problems:

  1. separate workstations for access to the production network - yes, now you will have 2 computers on your desktop.
  2. other LDAP catalog or Domain controller for production network;
  3. firewall analyzer, network equipment analyzer;
  4. netflow analyzer.

Disadvantages

Now you will have 2 computers on your desktop if you need access to production network. It hurts 😀

Support the project

Please subscribe - this is free support for the project

Have an idea for improvement?

You might also like...
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

Code for
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

A best practice for tensorflow project template architecture.
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Comments
  • WSUS Server Terminology

    WSUS Server Terminology

    WSUS no longer uses the master/slave terminology. Instead use upstream & downstream servers.

    https://docs.microsoft.com/en-us/windows-server/administration/windows-server-update-services/plan/plan-your-wsus-deployment

    bug 
    opened by LinealJoe 2
  • Add Social preview

    Add Social preview

    Add Social preview Upload an image to customize your repository’s social media preview.

    Images should be at least 640×320px (1280×640px for best display). Download template

    enhancement 
    opened by sergiomarotco 1
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    Beep boop. Your images are optimized!

    Your image file size has been reduced by 9% 🎉

    Details

    | File | Before | After | Percent reduction | |:--|:--|:--|:--| | /Other/Powtoon_GIF.gif | 561.10kb | 507.21kb | 9.61% | | /Schematic symbols/Schematic symbols.jpg | 63.88kb | 61.17kb | 4.24% | | | | | | | Total : | 624.98kb | 568.38kb | 9.06% |


    📝 docs | :octocat: repo | 🙋🏾 issues | 🏪 marketplace

    ~Imgbot - Part of Optimole family

    opened by imgbot[bot] 0
  • Level 4 with one computer (Privileged Access Workstation)

    Level 4 with one computer (Privileged Access Workstation)

    Level four can be achieved with only one physical computer on your desktop. One can use virtual machines and call it a Privileged Access Workstation: https://techcommunity.microsoft.com/t5/data-center-security/privileged-access-workstation-paw/ba-p/372274

    It hurts a little less than two physical computers. ;)

    good first issue 
    opened by C0FFEEC0FFEE 7
Releases(4.1.3)
Owner
Security evangelist
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022