[ICML 2021] A fast algorithm for fitting robust decision trees.

Overview

GROOT: Growing Robust Trees

Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust against user-specified adversarial examples. The algorithm closely resembles algorithms used for fitting normal decision trees (i.e. CART) but changes the splitting criterion and the way samples propagate when creating a split.

This repository contains the module groot that implements GROOT as a Scikit-learn compatible classifier, an adversary for model evaluation and easy functions to import datasets. For documentation see https://groot.cyber-analytics.nl

Simple example

To train and evaluate GROOT on a toy dataset against an attacker that can move samples by 0.5 in each direction one can use the following code:

from groot.adversary import DecisionTreeAdversary
from groot.model import GrootTreeClassifier

from sklearn.datasets import make_moons

X, y = make_moons(noise=0.3, random_state=0)
X_test, y_test = make_moons(noise=0.3, random_state=1)

attack_model = [0.5, 0.5]
is_numerical = [True, True]
tree = GrootTreeClassifier(attack_model=attack_model, is_numerical=is_numerical, random_state=0)

tree.fit(X, y)
accuracy = tree.score(X_test, y_test)
adversarial_accuracy = DecisionTreeAdversary(tree, "groot").adversarial_accuracy(X_test, y_test)

print("Accuracy:", accuracy)
print("Adversarial Accuracy:", adversarial_accuracy)

Installation

groot can be installed from PyPi: pip install groot-trees

To use Kantchelian's MILP attack it is required that you have GUROBI installed along with their python package: python -m pip install -i https://pypi.gurobi.com gurobipy

Specific dependency versions

To reproduce our experiments with exact package versions you can clone the repository and run: pip install -r requirements.txt

We recommend using virtual environments.

Reproducing 'Efficient Training of Robust Decision Trees Against Adversarial Examples' (article)

To reproduce the results from the paper we provide generate_k_fold_results.py, a script that takes the trained models (from JSON format) and generates tables and figures. The resulting figures generate under /out/.

To not only generate the results but to also retrain all models we include the scripts train_kfold_models.py and fit_chen_xgboost.py. The first script runs the algorithms in parallel for each dataset then outputs to /out/trees/ and /out/forests/. Warning: the script can take a long time to run (about a day given 16 cores). The second script train specifically the Chen et al. boosting ensembles. /out/results.zip contains all results from when we ran the scripts.

To experiment on image datasets we have a script image_experiments.py that fits and output the results. In this script, one can change the dataset variable to 'mnist' or 'fmnist' to switch between the two.

The scripts summarize_datasets.py and visualize_threat_models.py output some figures we used in the text.

Implementation details

The TREANT implementation (groot.treant.py) is copied almost completely from the authors of TREANT at https://github.com/gtolomei/treant with small modifications to better interface with the experiments. The heuristic by Chen et al. runs in the GROOT code, only with a different score function. This score function can be enabled by setting chen_heuristic=True on a GrootTreeClassifier before calling .fit(X, y). The provably robust boosting implementation comes almost completely from their code at https://github.com/max-andr/provably-robust-boosting and we use a small wrapper around their code (groot.provably_robust_boosting.wrapper.py) to use it. When we recorded the runtimes we turned off all parallel options in the @jit annotations from the code. The implementation of Chen et al. boosting can be found in their own repo https://github.com/chenhongge/RobustTrees, from whic we need to compile and copy the binary xgboost to the current directory. The script fit_chen_xgboost.py then calls this binary and uses the command line interface to fit all models.

Important note on TREANT

To encode L-infinity norms correctly we had to modify TREANT to NOT apply rules recursively. This means we added a single break statement in the treant.Attacker.__compute_attack() method. If you are planning on using TREANT with recursive attacker rules then you should remove this statement or use TREANT's unmodified code at https://github.com/gtolomei/treant .

Contact

For any questions or comments please create an issue or contact me directly.

Comments
  • Reproducing results from the article, issue with runtimes.csv

    Reproducing results from the article, issue with runtimes.csv

    Hello! I am trying to reproduce results from the article, and I can't figure out certain problem. First I am trying to run train_kfold_models, but the code always ouputs an error: "ImportError: cannot import name 'GrootTree' from 'groot.model'". Is there something wrong with the .py file I am trying to run, or is this problem something that doesn't occur to you and everyone else (-->something wrong on computer or files or environment)?

    Onni Mansikkamäki

    opened by OnniMansikkamaki 3
  • is_numerical argument GrootTreeClassifier

    is_numerical argument GrootTreeClassifier

    Running the example code on the make moons data in the README I get:

    Traceback (most recent call last):
      File "/home/.../groot_test.py", line 11, in <module>
        tree = GrootTreeClassifier(attack_model=attack_model, is_numerical=is_numerical, random_state=0)
    TypeError: __init__() got an unexpected keyword argument 'is_numerical'
    

    Leaving out the argument and having this line instead: tree = GrootTreeClassifier(attack_model=attack_model, random_state=0) results in this error:

    Traceback (most recent call last):
      File "/home/.../groot_test.py", line 15, in <module>
        adversarial_accuracy = DecisionTreeAdversary(tree, "groot").adversarial_accuracy(X_test, y_test)
      File "/home/.../venv/lib/python3.9/site-packages/groot/adversary.py", line 259, in __init__
        self.is_numeric = self.decision_tree.is_numerical
    AttributeError: 'GrootTreeClassifier' object has no attribute 'is_numerical'
    

    I'm guessing the code got an update, but the readme didn't. Or I made a stupid mistake, also very possible.

    opened by laudv 2
  • Reproducing result from paper

    Reproducing result from paper

    Hello! I am trying to reproduce the results from the paper. I am struggling to find, where these files: generate_k_fold_results.py, train_kfold_models.py, fit_chen_xgboost.py, image_experiments.py, summarize_datasets.py and visualize_threat_models.py are provided?

    Onni Mansikkamäki

    opened by OnniMansikkamaki 0
  • Regression decision trees and random forests

    Regression decision trees and random forests

    This PR adds GROOT decision trees and random forests that use the adversarial sum of absolute errors to make splits. It also adds new tests, speeds them up and updates the documentation.

    opened by daniel-vos 0
  • Add regression, tests and refactor into base class

    Add regression, tests and refactor into base class

    This PR adds a regression GROOT tree based on the adversarial sum of absolute errors, more tests and refactors GROOT trees into a base class (BaseGrootTree) with subclasses GrootTreeClassifier and GrootTreeRegressor extending it.

    opened by daniel-vos 0
Releases(v0.0.1)
Owner
Cyber Analytics Lab
@ Delft University of Technology
Cyber Analytics Lab
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023