Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Overview

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv)

This is a Pytorch implementation of our technical report.

Compare

Comparison between the proposed LV-ViT and other recent works based on transformers. Note that we only show models whose model sizes are under 100M.

Training Pipeline

Pipeline

Our codes are based on the pytorch-image-models by Ross Wightman.

LV-ViT Models

Model layer dim Image resolution Param Top 1 Download
LV-ViT-S 16 384 224 26.15M 83.3 link
LV-ViT-S 16 384 384 26.30M 84.4 link
LV-ViT-M 20 512 224 55.83M 84.0 link
LV-ViT-M 20 512 384 56.03M 85.4 link
LV-ViT-L 24 768 448 150.47M 86.2 link

Requirements

torch>=1.4.0 torchvision>=0.5.0 pyyaml timm==0.4.5

data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Validation

Replace DATA_DIR with your imagenet validation set path and MODEL_DIR with the checkpoint path

CUDA_VISIBLE_DEVICES=0 bash eval.sh /path/to/imagenet/val /path/to/checkpoint

Label data

We provide NFNet-F6 generated dense label map here. As NFNet-F6 are based on pure ImageNet data, no extra training data is involved.

Training

Coming soon

Reference

If you use this repo or find it useful, please consider citing:

@misc{jiang2021token,
      title={Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet}, 
      author={Zihang Jiang and Qibin Hou and Li Yuan and Daquan Zhou and Xiaojie Jin and Anran Wang and Jiashi Feng},
      year={2021},
      eprint={2104.10858},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Related projects

T2T-ViT, Re-labeling ImageNet.

Comments
  • error: download the pretrained model but couldn't be unzipped

    error: download the pretrained model but couldn't be unzipped

    tar -xvf lvvit_s-26M-384-84-4.pth.tar tar: This does not look like a tar archive tar: Skipping to next header tar: Exiting with failure status due to previous errors

    opened by Williamlizl 10
  • The accuracy of the validation set is 0,and the loss is always around 13

    The accuracy of the validation set is 0,and the loss is always around 13

    Hello! I use ILSVRC2012_img_train and ILSVRC2012_img_val, and use the provided label_top5_train_nfnet from Google Drive. I train lv-vit-s with batch_size 64 without apex for one epoch. Thanks for your advice.

    opened by yifanQi98 7
  • Pretrained weights for LV-ViT-T

    Pretrained weights for LV-ViT-T

    Hi,

    Thanks for sharing your work. Could you also provide the pre-trained weights for the LV-ViT-T model variant, the one that achieves 79.1% top1-acc. as mentioned in Table 1 of your paper?

    All the best, Marc

    opened by marc345 5
  • train error: AttributeError: 'tuple' object has no attribute 'log_softmax'

    train error: AttributeError: 'tuple' object has no attribute 'log_softmax'

    Hi, thanks for you great work. When I train script, some error occurs: AttributeError: 'tuple' object has no attribute 'log_softmax'

    with amp_autocast():   
                output = model(input)  
                loss = loss_fn(output, target)  # error occurs
    
    

    and loss function is train_loss_fn = LabelSmoothingCrossEntropy(smoothing=0.0).cuda()

    by the way: Could you please tell me why we need to specify smoothing=0.0?

    opened by lxy5513 5
  • RuntimeError: CUDA error: device-side assert triggered

    RuntimeError: CUDA error: device-side assert triggered

    I am a green hand of DL. When I run the code of volo with tlt in a single or multi GPU, I get an error as follows: /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:312: operator(): block: [0,0,0], thread: [25,0,0] Assertion idx_dim >= 0 && idx_dim < index_size && "index out of bounds" failed. Traceback (most recent call last): File "main.py", line 949, in main() File "main.py", line 664, in main optimizers=optimizers) File "main.py", line 773, in train_one_epoch label_size=args.token_label_size) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 90, in mixup_target y1 = get_labelmaps_with_coords(target, num_classes, on_value=on_value, off_value=off_value, device=device, label_size=label_size) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 64, in get_labelmaps_with_coords num_classes=num_classes,device=device) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 16, in get_featuremaps _label_topk[1][:, :, :].long(), RuntimeError: CUDA error: device-side assert triggered.

    I can't fix this problem right now.

    opened by JIAOJIAYUASD 4
  • Generating label for custom dataset

    Generating label for custom dataset

    Hello,

    Thank you for sharing your work. I am currently trying to generate token label to a custom dataset for model lvvit_s, but I keep getting the loss close to 7 and the Accuracy 0 (not pre-trained and using 1 GPU in Google Colab). I also tried using the pre-trained model with --transfer but got 0 in both Loss and Acc . What option should I use for a custom dataset? image

    opened by AleMaiaF 2
  • generate_label.py unable to find model lvvit_s

    generate_label.py unable to find model lvvit_s

    Hi,

    When I tried to run the label generation script for the model lvvit_s it returned an error "RuntimeError: Unknown model".

    Solution: It worked when I added the line "import tlt.models" in the file generate_label.py.

    opened by AleMaiaF 2
  • Can Token labeling reach higher than annotator model?

    Can Token labeling reach higher than annotator model?

    Greetings,

    Thank you for this incredible research.

    I would like to know if it is possible to use Token Labeling to achieve scores higher than that of the annotator model, I believe this was the case with VOLO D5 model where it achieved higher score than NFNet, model used for annotation.

    opened by ErenBalatkan 1
  • label_map does not do the same augmentation (random crop) as the input image

    label_map does not do the same augmentation (random crop) as the input image

    Hi Thanks so much for the nice work! I am curious if you could share the insight on processing of the label_map. If I understand it correctly, after we load image and the corresponding, we shall do the same cropping/ flip/ resize, but in https://github.com/zihangJiang/TokenLabeling/blob/aa438eff9b9fc2daa8c8b4cc6bfaa6e3721f995e/tlt/data/label_transforms_factory.py#L58-L73 Seems only image was cropped, but the label map does not do the same cropping, which make the label map not match with the image?

    Shall we do

            return torchvision_F.resized_crop(
                    img, i, j, h, w, self.size, interpolation
            ), torchvision_F.resized_crop(
                    label_map, i / ratio, j / ratio, h / ratio, w / ratio, self.size, interpolation
            )
    

    Thanks

    opened by haooooooqi 1
  • Python3.6, ok; Python3.8, error

    Python3.6, ok; Python3.8, error

    Test: [ 0/1] Time: 11.293 (11.293) Loss: 0.7043 (0.7043) [email protected]: 42.1875 (42.1875) [email protected]: 100.0000 (100.0000) Test: [ 1/1] Time: 0.108 (5.701) Loss: 0.5847 (0.6689) [email protected]: 89.8148 (56.3187) [email protected]: 100.0000 (100.0000) free(): invalid pointer free(): invalid pointer Traceback (most recent call last): File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", line 303, in <module> main() File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", line 294, in main raise subprocess.CalledProcessError(returncode=process.returncode, subprocess.CalledProcessError: Command '['/opt/conda/bin/python3.8', '-u', 'main.py', '--local_rank=1', './dataset/c/c', '--model', 'lvvit_s', '-b', '128', '--apex-amp', '--img-size', '224', '--drop-path', '0.1', '--token-label', '--token-label-size', '14', '--dense-weight', '0.0', '--num-classes', '2', '--finetune', './pretrained/lvvit_s-26M-384-84-4.pth.tar']' died with <Signals.SIGABRT: 6>. [email protected]:/puxin_libochao/TokenLabeling# CUDA_VISIBLE_DEVICES=0,1 bash ./distributed_train.sh 2 ./dataset/c/c --model lvvit_s -b 128 --apex-amp --img-size 224 --drop-path 0.1 --token-label --token-label-size 14 --dense-weight 0.0 --num-classes 2 --finetune ./pretrained/lvvit_s-26M-384-84-4.pth.tar

    opened by Williamlizl 1
  • A Bag of Training Techniques for ViT

    A Bag of Training Techniques for ViT

    Hi, thanks for your wonderful work. I have a question that whether training techniques mentioned in the LV-Vit can be used in other downstream task like object detection? In your paper, I see that many of this techniques are used in ImageNet. Thanks!

    opened by qdd1234 1
  • how to apply token labeling to CNN ?

    how to apply token labeling to CNN ?

    Hello ~ I'm interested in your token labeling technique, So I want to apply this technique in CNN based model because ViT is very heavy to train.

    can I get the your code with CNN token labeling? if you're not give me some detail for implementing

    thank you.

    opened by HoJ00n2 0
  • Model settings for Cifar10

    Model settings for Cifar10

    I am interested if there is any LV-ViT- model setup you have tested for Cifar10. I would like to know the proper setup of all blocks in none pretrained weights settings.

    opened by Aminullah6264 0
Owner
蒋子航
Now a Ph.D. student supervised by Prof. Feng Jiashi in ECE, NUS.
蒋子航
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023