Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

Overview

MUSCO - Multimodal Descriptions of Social Concepts

Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images

This project aims to investigate, model, and experiment with how and why social concepts (such as violence, power, peace, or destruction) are modeled and detected by humans and machines in images. It specifically focuses on the detection of social concepts referring to non-physical objects in (visual) art images, as these concepts are powerful tools for visual data management, especially in the Cultural Heritage field (present in resources such Iconclass and Getty Vocabularies). The hypothesis underlying this research is that we can formulate a description of a social concept as a multimodal frame, starting from a set of observations (in this case, image annotations). We believe thaat even with no explicit definition of the concepts, a “common sense” description can be (approximately) derived from observations of their use.

Goals of this work include:

  • Identification of a set of social concepts that is consistently used to tag the non-concrete content of (art) images.
  • Creation of a dataset of art images and social concepts evoked by them.
  • Creation of an Social Concepts Knowledge Graph (KG).
  • Identification of common features of art images tagged by experts with the same social concepts.
  • Automatic detection of social concepts in previously unseen art images.
  • Automatic generation of new art images that evoke specific social concepts.

The approach proposed is to automatically model social concepts based on extraction and integration of multimodal features. Specifically, on sensory-perceptual data, such as pervasive visual features of images which evoke them, along with distributional linguistic patterns of social concept usage. To do so, we have defined the MUSCO (Multimodal Descriptions of Social Concepts) Ontology, which uses the Descriptions and Situations (Gangemi & Mika 2003) pattern modularly. It considers the image annotation process a situation representing the state of affairs of all related data (actual multimedia data as well as metadata), whose descriptions give meaning to specific annotation structures and results. It also considers social concepts as entities defined in multimodal description frames.

The starting point of this project is one of the richest datasets that include social concepts referring to non-physical objects as tags for the content of visual artworks: the metadata released by The Tate Collection on Github in 2014. This dataset includes the metadata for around 70,000 artworks that Tate owns or jointly owns with the National Galleries of Scotland as part of ARTIST ROOMS. To tag the content of the artworks in their collection, the Tate uses a subject taxonomy with three levels (0, 1, and 2) of increasing specificity to provide a hierarchy of subject tags (for example; 0 religion and belief, 1 universal religious imagery, 2 blessing).

This repository holds the functions.py file, which defines functions for

  • Preprocessing the Tate Gallery metadata as input source (create_newdict(), get_topConcepts(), and get_parent_rels())
  • Reconstruction and formalization of the the Tate subject taxonomy (get_tatetaxonomy_ttl())
  • Visualization of the Tate subject taxonomy, allowing manual inspection (get_all_edges(), and get_gv_pdf())
  • Identification of social concepts from the Tate taxonomy (get_sc_dict(), and get_narrow_sc_dict())
  • Formalization of taxonomic relations between social concepts (get_sc_tate_taxonomy_ttl())
  • Gathering specific artwork details relevant to the tasks proposed in this project (get_artworks_filenames(), get_all_artworks_tags(), and get_all_artworks_details())
  • Corpus creation: matching social concept to art images (get_sc_artworks_dict() and get_match_details(input_sc))
  • Co-occuring tag collection and analysis (get_all_scs_tag_ids(), get_objects_and_actions_dict(input_sc), and get_match_stats())
  • Image dominant color analyses (get_dom_colors() and get_avg_sc_contrast())

In order to understand the breadth, abstraction level, and hierarchy of subject tags, I reconstructed the hierarchy of the Tate subject data by transforming it into a RDF file in Turtle .ttl format with the MUSCO ontology. SKOS was used as an initial step because of its simple way to assert that one concept is broader in meaning (i.e. more general) than another, with the skos:broader property. Additionally, I used the Graphviz module in order to visualize the hierchy.

Next steps include:

  • Automatic population of a KG with the extracted data
  • Disambiguating the terms, expanding the terminology by leveraging lexical resources such as WordNet, VerbNet, and FrameNet, and studying the terms’ distributional linguistic features.
  • MUSCO’s modular infrastructure allows expansion of types of integrated data (potentially including: other co-occurring social concepts, contrast measures, common shapes, repetition, and other visual patterns, other senses (e.g., sound), facial recognition analysis, distributional semantics information)
  • Refine initial social concepts list, through alignment with the latest cognitive science research as well as through user-based studies.
  • Enlarge and diversify art image corpus after a survey of additional catalogues and collections.
  • Distinguishing artwork medium types

The use of Tate images in the context of this non-commercial, educational research project falls within the within the Tate Images Terms of use: "Website content that is Tate copyright may be reproduced for the non-commercial purposes of research, private study, criticism and review, or for limited circulation within an educational establishment (such as a school, college or university)."

Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022