Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

Overview

MUSCO - Multimodal Descriptions of Social Concepts

Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images

This project aims to investigate, model, and experiment with how and why social concepts (such as violence, power, peace, or destruction) are modeled and detected by humans and machines in images. It specifically focuses on the detection of social concepts referring to non-physical objects in (visual) art images, as these concepts are powerful tools for visual data management, especially in the Cultural Heritage field (present in resources such Iconclass and Getty Vocabularies). The hypothesis underlying this research is that we can formulate a description of a social concept as a multimodal frame, starting from a set of observations (in this case, image annotations). We believe thaat even with no explicit definition of the concepts, a “common sense” description can be (approximately) derived from observations of their use.

Goals of this work include:

  • Identification of a set of social concepts that is consistently used to tag the non-concrete content of (art) images.
  • Creation of a dataset of art images and social concepts evoked by them.
  • Creation of an Social Concepts Knowledge Graph (KG).
  • Identification of common features of art images tagged by experts with the same social concepts.
  • Automatic detection of social concepts in previously unseen art images.
  • Automatic generation of new art images that evoke specific social concepts.

The approach proposed is to automatically model social concepts based on extraction and integration of multimodal features. Specifically, on sensory-perceptual data, such as pervasive visual features of images which evoke them, along with distributional linguistic patterns of social concept usage. To do so, we have defined the MUSCO (Multimodal Descriptions of Social Concepts) Ontology, which uses the Descriptions and Situations (Gangemi & Mika 2003) pattern modularly. It considers the image annotation process a situation representing the state of affairs of all related data (actual multimedia data as well as metadata), whose descriptions give meaning to specific annotation structures and results. It also considers social concepts as entities defined in multimodal description frames.

The starting point of this project is one of the richest datasets that include social concepts referring to non-physical objects as tags for the content of visual artworks: the metadata released by The Tate Collection on Github in 2014. This dataset includes the metadata for around 70,000 artworks that Tate owns or jointly owns with the National Galleries of Scotland as part of ARTIST ROOMS. To tag the content of the artworks in their collection, the Tate uses a subject taxonomy with three levels (0, 1, and 2) of increasing specificity to provide a hierarchy of subject tags (for example; 0 religion and belief, 1 universal religious imagery, 2 blessing).

This repository holds the functions.py file, which defines functions for

  • Preprocessing the Tate Gallery metadata as input source (create_newdict(), get_topConcepts(), and get_parent_rels())
  • Reconstruction and formalization of the the Tate subject taxonomy (get_tatetaxonomy_ttl())
  • Visualization of the Tate subject taxonomy, allowing manual inspection (get_all_edges(), and get_gv_pdf())
  • Identification of social concepts from the Tate taxonomy (get_sc_dict(), and get_narrow_sc_dict())
  • Formalization of taxonomic relations between social concepts (get_sc_tate_taxonomy_ttl())
  • Gathering specific artwork details relevant to the tasks proposed in this project (get_artworks_filenames(), get_all_artworks_tags(), and get_all_artworks_details())
  • Corpus creation: matching social concept to art images (get_sc_artworks_dict() and get_match_details(input_sc))
  • Co-occuring tag collection and analysis (get_all_scs_tag_ids(), get_objects_and_actions_dict(input_sc), and get_match_stats())
  • Image dominant color analyses (get_dom_colors() and get_avg_sc_contrast())

In order to understand the breadth, abstraction level, and hierarchy of subject tags, I reconstructed the hierarchy of the Tate subject data by transforming it into a RDF file in Turtle .ttl format with the MUSCO ontology. SKOS was used as an initial step because of its simple way to assert that one concept is broader in meaning (i.e. more general) than another, with the skos:broader property. Additionally, I used the Graphviz module in order to visualize the hierchy.

Next steps include:

  • Automatic population of a KG with the extracted data
  • Disambiguating the terms, expanding the terminology by leveraging lexical resources such as WordNet, VerbNet, and FrameNet, and studying the terms’ distributional linguistic features.
  • MUSCO’s modular infrastructure allows expansion of types of integrated data (potentially including: other co-occurring social concepts, contrast measures, common shapes, repetition, and other visual patterns, other senses (e.g., sound), facial recognition analysis, distributional semantics information)
  • Refine initial social concepts list, through alignment with the latest cognitive science research as well as through user-based studies.
  • Enlarge and diversify art image corpus after a survey of additional catalogues and collections.
  • Distinguishing artwork medium types

The use of Tate images in the context of this non-commercial, educational research project falls within the within the Tate Images Terms of use: "Website content that is Tate copyright may be reproduced for the non-commercial purposes of research, private study, criticism and review, or for limited circulation within an educational establishment (such as a school, college or university)."

Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022