This repository allows you to anonymize sensitive information in images/videos. The solution is fully compatible with the DL-based training/inference solutions that we already published/will publish for Object Detection and Semantic Segmentation.

Overview

BMW-Anonymization-Api

Data privacy and individuals’ anonymity are and always have been a major concern for data-driven companies.

Therefore, we designed and implemented an anonymization API that localizes and obfuscates (i.e. hides) sensitive information in images/videos in order to preserve the individuals' anonymity. The main features of our anonymization tool are the following:

  • Agnostic in terms of localization techniques: our API currently supports Semantic segmentation or Object Detection.
  • Modular in terms of sensitive information: the user can train a Deep Learning (DL) model for object detection and semantic segmentation (the training gui will be published soon) to localize the sensitive information she/he wishes to protect, e.g., individual's face or body, personal belongings, vehicles...
  • Scalable in terms of anonymization techniques: our API currently supports pixelating, blurring, blackening (masking). Also, additinal anonymization techniques can be configured as stated below. For the highest level of privacy, we recommend using the blackening technique with degree 1.
  • Supports DL-based models optimized via the Intel® OpenVINO™ toolkit v2021.1 for CPU usage: DL-based models optimized and deployed via the Openvino Segmentation Inference API and the Openvino Detection Inference API can also be used.
  • Compatible with the BMW Deep Learning tools: DL models trained via our training and deployed via our inference APIs are compatible with this anonymization API.

animated

General Architecture & Deployment Mode:

Our anonymization API receives an image along with a JSON object through which the user specifies mainly:

  • The sensitive information she/he wishes to obfuscate.
  • The anonymization technique.
  • The anonymization degree.
  • The localization technique.

You can deploy the anonymization API either:

  • As a standalone docker container which can be connected to other inference APIs (object detection or semantic segmentation) deployed within a standalone docker container as well.
  • As a network of docker containers along with other inference APIs running on the same machine via docker-compose. (please check the following link for the docker-compose deployment).

Prerequisites:

  • docker
  • docker-compose

Check for prerequisites

To check if docker-ce is installed:

docker --version

To check if docker-compose is installed:

docker-compose --version

Install prerequisites

Ubuntu

To install Docker and Docker Compose on Ubuntu, please follow the link.

Windows 10

To install Docker on Windows, please follow the link.

P.S: For Windows users, open the Docker Desktop menu by clicking the Docker Icon in the Notifications area. Select Settings, and then Advanced tab to adjust the resources available to Docker Engine.

Build The Docker Image

As mentioned before, this container can be deployed using either docker or docker-compose.

  • If you wish to deploy this API using docker-compose, please refer to following link. After deploying the API with docker compose, please consider returning to this documentation for further information about the API Endpoints and use configuration file sample sections.

  • If you wish to deploy this API using docker, please continue with the following docker build and run commands.

In order to build the project run the following command from the project's root directory:

 docker build -t anonymization_api -f docker/dockerfile .

Build behind a proxy

In order to build the image behind a proxy use the following command in the project's root directory:

docker build --build-arg http_proxy='your_proxy' --build-arg https_proxy='your_proxy' -t anonymization_api -f ./docker/dockerfile .

In case of build failure, the docker image python:3.6 should be updated to a newer version:

docker pull python:3.6

Run the docker container

To run the API, go to the API's directory and run the following:

Using Linux based docker:

sudo docker run -itv $(pwd)/src/main:/main -v $(pwd)/jsonFiles:/jsonFiles -p <port_of_your_choice>:4343 anonymization_api
Behind a proxy:
sudo docker run -itv $(pwd)/src/main:/main -v $(pwd)/jsonFiles:/jsonFiles  --env HTTP_PROXY="" --env HTTPS_PROXY="" --env http_proxy="" --env https_proxy="" -p 5555:4343 anonymization_api

Using Windows based docker:

docker run -itv ${PWD}/src/main:/main -v ${PWD}/jsonFiles:/jsonFiles -p <port_of_your_choice>:4343 anonymization_api

The API file will be run automatically, and the service will listen to http requests on the chosen port.

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_IP>:<docker_host_port>/docs

Endpoints summary

Configuration

/set_url (POST)

Set the URL of the inference API that you wish to connect to the Anonymization API. If the specified URL is unreachable due to connection problems, it will not be added to the JSON url_configuration file. The URL should be specified in the following format "http://ip:port/".

/list_urls (GET)

Returns the URLs of the inference APIs that were already configured via the /set_url POST request.

/remove_url (POST)

Removes the specified URL from the JSON url_configuration file

/remove_all_urls (POST)

Removes all available urls from the JSON url_configuration file

/available_methods/ (GET)

After setting the inference URLs via the /set_url request, the user can view the Anonymization API's configuration by issuing the /available_methods request. Mainly the user can view (i) the supported sensitive information (label_names) , (ii) the supported localization techniques, (iii) the inference URLs and (iv) the DL model name that are configured in the deployed anonymization API as seen below.

Anonymization

/anonymize/ (POST)

Anonymizes the input image based on the user's JSON configuration file

/anonymize_video/ (POST)

Anonymizes a video based on the user's sensitive info and save the anonymized video in src/main/anonymized_videos under <original_video_name>_TIMESTAMP.mp4

Video Anonymization Time

The video might take a while, actually you can estimate the time that it may take by using the following formula: Video_Anonymization_Time = Video_Length x Number_Of_Frames_Per_Second x Anonymization_Time_Of_Each_Frame

User configuration file sample

In order to anonymize an image, the user should specify the different details in the user's JSON configuration file

Please check a sample in the below image:

Note that the URL field is an optional field that you can add in case you wanted to use a specific URL of a running API. You can just add the URL as an optional field in this file as shown in the first sensitive info. In case this field is not specified, the URL defined in the url_configuration.json file will be used by default if it matches all the requirements.

To add a new technique to the API:

Please refer to the following link add new technique documentation for more information on how to add a new anonymization technique to the APIs with common and custom labels.

Benchmark

Object Detection

GPU Network Width Height Inference time Anonymization time Total
Titan RTX yolov4 640 768 0.2 s 0.07 s 0.27 s
Titan RTX yolov4 1024 768 0.4 s 0.14 s 0.54 s
Titan RTX yolov4 2048 1024 1.2 s 0.6 s 1.8 s
Titan RTX yolov4 3840 2160 4.8 s 0.6 s 5.4 s

Semantic Segmentation

GPU Network Width Height Inference time Anonymization time Total
Titan RTX psp resnet 101 640 768 0.2 s 0.8 s 1 s
Titan RTX psp resnet 101 1024 768 0.3 s 0.8 s 1.1 s
Titan RTX psp resnet 101 2048 1024 0.9 s 1 s 1.9 s
Titan RTX psp resnet 101 3840 2160 2 s 3 s 5 s

Possible Error

  • You may encounter the below error when running the docker container at startup in standalone version or docker-compose version url_error

  • In case you do, please make sure that the URL of the inference APIs listed in the jsonFiles/url_configuration.json are still recheable. A possible solution would be to empty jsonFiles/url_configuration.json as seen below before starting the container:

    {
    "urls": [
    ]
    }
    

Acknowledgments

Ghenwa Aoun, BMW Innovation Lab, Munich, Germany

Antoine Charbel, inmind.ai, Beirut, Lebanon

Roy Anwar, BMW Innovation Lab, Munich, Germany

Fady Dib, BMW Innovation Lab, Munich, Germany

Jimmy Tekli, BMW Innovation Lab, Munich, Germany

Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022