Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Overview

Gradient Centralization TensorFlow Twitter

PyPI Upload Python Package Flake8 Lint Python Version

Binder Open In Colab

GitHub license PEP8 GitHub stars GitHub forks GitHub watchers

This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique for Deep Neural Networks as suggested by Yong et al. in the paper Gradient Centralization: A New Optimization Technique for Deep Neural Networks. It can both speedup training process and improve the final generalization performance of DNNs.

Installation

Run the following to install:

pip install gradient-centralization-tf

Usage

gctf.centralized_gradients_for_optimizer

Create a centralized gradients functions for a specified optimizer.

Arguments:

  • optimizer: a tf.keras.optimizers.Optimizer object. The optimizer you are using.

Example:

>>> opt = tf.keras.optimizers.Adam(learning_rate=0.1)
>>> optimizer.get_gradients = gctf.centralized_gradients_for_optimizer(opt)
>>> model.compile(optimizer = opt, ...)

gctf.get_centralized_gradients

Computes the centralized gradients.

This function is ideally not meant to be used directly unless you are building a custom optimizer, in which case you could point get_gradients to this function. This is a modified version of tf.keras.optimizers.Optimizer.get_gradients.

Arguments:

  • optimizer: a tf.keras.optimizers.Optimizer object. The optimizer you are using.
  • loss: Scalar tensor to minimize.
  • params: List of variables.

Returns:

A gradients tensor.

gctf.optimizers

Pre built updated optimizers implementing GC.

This module is speciially built for testing out GC and in most cases you would be using gctf.centralized_gradients_for_optimizer though this module implements gctf.centralized_gradients_for_optimizer. You can directly use all optimizers with tf.keras.optimizers updated for GC.

Example:

>>> model.compile(optimizer = gctf.optimizers.adam(learning_rate = 0.01), ...)
>>> model.compile(optimizer = gctf.optimizers.rmsprop(learning_rate = 0.01, rho = 0.91), ...)
>>> model.compile(optimizer = gctf.optimizers.sgd(), ...)

Returns:

A tf.keras.optimizers.Optimizer object.

Developing gctf

To install gradient-centralization-tf, along with tools you need to develop and test, run the following in your virtualenv:

git clone [email protected]:Rishit-dagli/Gradient-Centralization-TensorFlow
# or clone your own fork

pip install -e .[dev]

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Comments
  • On windows Tensorflow 2.5 it gives error

    On windows Tensorflow 2.5 it gives error

    On windows 10 with miniconda enviroment tensorflow 2.5 gives error on centralized_gradients.py file.

    the solution is change import keras.backend as K with import tensorflow.keras.backend as K

    bug 
    opened by mgezer 5
  • The results in the mnist example are wrong/misleading

    The results in the mnist example are wrong/misleading

    Describe the bug The results in your colab ipython notebook are misleading: https://colab.research.google.com/github/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/examples/gctf_mnist.ipynb

    In this example, the model is first trained with a normal Adam optimizer:

    model.compile(optimizer = tf.keras.optimizers.Adam(),
                  loss = 'sparse_categorical_crossentropy',
                  metrics = ['accuracy'])
    
    history_no_gctf = model.fit(training_images, training_labels, epochs=5, callbacks = [time_callback_no_gctf])
    

    And afterwards the same model is recompiled with the gctf.optimizers.adam(). However, recompiling a keras model does not reset the weights. This means that in the first fit call the model is trained and then in the second fit call with the new optimizer the same model is used and of course then the results are better.

    This can be fixed, by recreating the model for the second run, by just adding these few lines:

    import gctf #import gctf
    
    time_callback_gctf = TimeHistory()
    
    # Model architecture
    model = tf.keras.models.Sequential([
                                        tf.keras.layers.Flatten(), 
                                        tf.keras.layers.Dense(512, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(256, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(64, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(512, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(256, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(64, activation=tf.nn.relu), 
                                        tf.keras.layers.Dense(10, activation=tf.nn.softmax)])
    
    model.compile(optimizer = gctf.optimizers.adam(),
                  loss = 'sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    
    history_gctf = model.fit(training_images, training_labels, epochs=5, callbacks=[time_callback_gctf])
    

    However, then the results are not better than without gctf:

    Type                   Execution time    Accuracy      Loss
    -------------------  ----------------  ----------  --------
    Model without gctf:           24.7659    0.88825   0.305801
    Model with gctf               24.7881    0.889567  0.30812
    

    Could you please clarify what happens here. I tried this gctf.optimizers.adam() optimizer in my own research and it didn't change the results at all and now after seeing it doesn't work in the example which was constructed here. Makes me question the results of this paper.

    To Reproduce Execute the colab file given in the repository: https://colab.research.google.com/github/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/examples/gctf_mnist.ipynb

    Expected behavior The right comparison would be if both models start from a random initialization, not that the second model can start with the already pre-trained weights.

    Looking forward to a fast a swift explanation.

    Best, Max

    question 
    opened by themasterlink 2
  • Wider dependency requirements

    Wider dependency requirements

    The package as of now to be installed requires tensorflow ~= 2.4.0 and keras ~= 2.4.0. It turns out that this is sometimes problematic for folks who have custom installations of TensorFlow and a winder requirement could be set up.

    enhancement 
    opened by Rishit-dagli 1
  • Release 0.0.3

    Release 0.0.3

    This release includes some fixes and improvements

    ✅ Bug Fixes / Improvements

    • Allow wider versions for TensorFlow and Keras while installing the package (#14 )
    • Fixed incorrect usage example in docstrings and description for centralized_gradients_for_optimizer (#13 )
    • Add clear aims for each of the examples of using gctf (#15 )
    • Updates PyPi classifiers to clearly show the aims of this project. This should have no changes in the way you use this package (#18 )
    • Add clear instructions for using this with custom optimizers i.e. directly use get_centralized_gradients however a complete example has not been pushed due to the reasons mentioned in the issue (#16 )
    opened by Rishit-dagli 0
  • Add an

    Add an "About The Examples" section

    Add an "About The Examples" section which contains a summary of the usage example notebooks and links to run it on Binder and Colab.


    Close #15

    opened by Rishit-dagli 0
  • Update relevant pypi classifiers

    Update relevant pypi classifiers

    Add PyPI classifiers for:

    • Development status
    • Intended Audience
    • Topic

    Further also added the Programming Language :: Python :: 3 :: Only classifer


    Closes #18

    opened by Rishit-dagli 0
  • Update pypi classifiers

    Update pypi classifiers

    I am specifically thinking of adding three more categories of pypi classifiers:

    • Development status
    • Intended Audience
    • Topic

    Apart from this I also think it would be great to add the Programming Language :: Python :: 3 :: Only to make sure the audience to know that this package is intended for Python 3 only.

    opened by Rishit-dagli 0
  • Add an

    Add an "About the examples" section

    It would be great to write an "About the example" section which could demonstrate in short what the example notebooks aim to achieve and show.

    documentation 
    opened by Rishit-dagli 0
  • Error in usage example for gctf.centralized_gradients_for_optimizer

    Error in usage example for gctf.centralized_gradients_for_optimizer

    I noticed that the docstrings for gctf.centralized_gradients_for_optimizer have an error in the example usage section. The example creates an Adam optimizer instance and saves it to opt however the centralized_gradients_for_optimizer is applied on optimizer which ideally does not exist and running the example would result in an error.

    documentation 
    opened by Rishit-dagli 0
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    opened by imgbot[bot] 0
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    opened by imgbot[bot] 0
Releases(v0.0.3)
  • v0.0.3(Mar 11, 2021)

    This release includes some fixes and improvements

    ✅ Bug Fixes / Improvements

    • Allow wider versions for TensorFlow and Keras while installing the package (#14 )
    • Fixed incorrect usage example in docstrings and description for centralized_gradients_for_optimizer (#13 )
    • Add clear aims for each of the examples of using gctf (#15 )
    • Updates PyPi classifiers to clearly show the aims of this project. This should have no changes in the way you use this package (#18 )
    • Add clear instructions for using this with custom optimizers i.e. directly use get_centralized_gradients however a complete example has not been pushed due to the reasons mentioned in the issue (#16 )
    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Feb 21, 2021)

    This release includes some fixes and improvements

    ✅ Bug Fixes / Improvements

    • Fix the issue of supporting multiple modules
    • Fix multiple typos.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Feb 20, 2021)

Owner
Rishit Dagli
High School, Ted-X, Ted-Ed speaker|Mentor, TFUG Mumbai|International Speaker|Microsoft Student Ambassador|#ExploreML Facilitator
Rishit Dagli
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022