2021 credit card consuming recommendation

Overview

2021-credit-card-consuming-recommendation

My implementation and sharing of this contest: https://tbrain.trendmicro.com.tw/Competitions/Details/18. I got rank 9 in the Private Leaderboard.

Run My Implementation

Required libs

matplotlib, numpy, pytorch, and yaml. Versions of them are not restricted as long as they're new enough.

Preprocess

python3 data_to_pkl.py
  • The officially provided csv file should be in data dir.
  • Output pkl file is also in data dir.

Feature Extraction

python3 pkl_to_fea_allow_shorter.py
  • See "作法分享" for detailed description of optional parameters.

Training

python3 train_cv_allow_shorter.py -s save_model_dir
  • -s: where you want to save the trained model.

Inference

Generate model outputs

python3 test_cv_raw_allow_shorter.py model_dir max_len
  • model_dir: directory of the trained model.
  • max_len: max number of month considered for each customer.

Merge model outputs

python3 test_cv_merge_allow_shorter.py n_fold_train
  • n_fold_train: number of folds used for training.

作法分享

以下將介紹本競賽所使用的執行環境、特徵截取、模型設計與訓練。

執行環境

硬體方面,初始時使用 ASUS P2440 UF 筆電,含 i7-8550U CPU 及 MX130 顯示卡,主記憶體擴充至 20 GB;後續使用較多特徵及較長期間的資料時,改為使用 AWS p2.xlarge 機器,含 K80 顯示卡以及約 64 GB 主記憶體。AWS 的經費來源是上一個比賽進入複賽拿到的點數,在打完複賽後還有剩下來的部分。

程式語言為 Python 3,未特別指定版本;函式庫則如本說明前半部所示,其中的 matplotlib 為繪圖觀察用,而 yaml 為儲存模型組態用。

特徵截取(附帶資料觀察)與預測目標

我先將欄位分為兩類,依照「訓練資料欄位說明」的順序,從 shop_tag(消費類別)起至 card_other_txn_amt_pct (其他卡片消費金額佔比)止,因為是從每月每類的消費行為而來,且消費行為必然是變動的,因此列為「時間變化類」;而 masts (婚姻狀態)起至最後為止,因所觀察到的每人的婚姻狀態或教育程度等,在比賽資料所截取的兩年間幾乎都不會變化,故列為「時間不變類」,以節省運算及儲存資源。事實上,在「時間不變類」的欄位當中,平均每人用過的不同狀態,平均約為 1.005 至 1.167 種,最多的則為 3 至 5 種。

時間變化類

對於每人每月的消費紀錄,以如下步驟取特徵

  1. 排序出消費金額前 n 大者,最佳成績中使用的 n 為 13。根據觀察,約 99% 的人,其每月消費類別數在 13 以下。
  2. 取該月時間特徵,為待預測月減去該月,共 1 維。
  3. 該月類別特徵共 49 維,若該月該類別消費金額在該月前 n 名中且金額大於 0 者,其特徵值由名次大到小依次為 n, n-1, n-2, …, 1;前 n 名以外或金額小於等於 0 的類別,其特徵值為 0。
  4. 對於前 n 名的每個類別,無論其消費金額皆取以下特徵,共 22 維:txn_cnt, txn_amt, domestic_offline_cnt, domestic_online_cnt, overseas_offline_cnt, overseas_online_cnt, domestic_offline_amt_pct, domestic_online_amt_pct, overseas_offline_amt_pct, overseas_online_amt_pct, card_*_txn_cnt (* = 1, 2, 4, 6, 10, other), card_*_txn_amt_pct (* = 1, 2, 4, 6, 10, other)。
    • 1, 2, 4, 6, 10, other 為所有消費紀錄中,使用次數最多的前六個卡片編號。
  5. 以上共 1 + 49 + 13 * 22 = 336 維

跨月份的取值方式如下圖所示,其中每個圓角方塊代表每人的一個月份的所有消費紀錄,而 N1 為 20 個月,N2 為 4 組,在範圍內會盡可能的取長或多。另,若該月未有消費紀錄,則忽略該月。

時間變化類取值方式

時間不變類

對於每位客戶,僅使用取值範圍內最後消費當月(N1 範圍內的最後一筆)的金額最大的類別所記載的資料來組成特徵。

使用時,以 masts, gender_code, age, primary_card, slam 各自編成 one-hot encoding 或數值型態後組合,共得 20 維,細節說明如下

  • masts: 含缺值共 4 種狀態,4 維。
  • gender_code: 含缺值共 3 種狀態,3 維。
  • age: 含缺值共 10 種狀態,10 維。
  • primary_card: 沒有缺值,共 2 種狀態,2 維。
  • slam: 數值型態,取 log 後做為特徵,1 維。

此部分亦嘗試過其他特徵,但可能是因為維度較大不易訓練(如 cuorg,含缺值共 35 維),或客戶有可能填寫不實(如 poscd),故未取得較好之結果。

預測目標

共 16 維,代表需要預測的 16 個類別,其中下月金額第一名者為 1,第二名者 0.8,第三名者 0.6,第四名以下有購買者 0.2,未購買者 0。

小結

以上取法經去除輸出全部為 0 (即預測目標月份沒有購買行為)之資料後,共約 102 萬組。

模型設計與訓練

本次比賽使用的模型架構如下圖,主體為 BiLSTM + attention,前後加上適量的 linear layers,其中標色部分為 attention 的做用範圍,最後面的 dense layers 之細部架構則為 (dense 128 + ReLU + dropout 0.1) * 2 + dense 16 + Sigmoid。

模型架構

訓練方式為 5 folds cross validation,預測時會將五個模型的結果取平均,再依據平均後的排名輸出前三名的類別。細節參數如下,未提及之參數係依照 pytorch 預設值,未進行修改:

  • Num of epochs: 100 epochs,若 validation loss 連續 10 個 epochs 未創新低,則提前終止該 fold 的訓練。
  • Batch size: 512。
  • Loss: MSE。
  • Optimizer: ADAM with learning rate 0.01。
  • Learning rate scheduler: 每個 epoch 下降為上一次的 0.95 倍,直至其低於 0.0001 為止。
Owner
Wang, Chung-Che
Wang, Chung-Che
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022