Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Overview

Meta-Solver for Neural Ordinary Differential Equations

Towards robust neural ODEs using parametrized solvers.

Main idea

Each Runge-Kutta (RK) solver with s stages and of the p-th order is defined by a table of coefficients (Butcher tableau). For s=p=2, s=p=3 and s=p=4 all coefficient in the table can be parametrized with no more than two variables [1].

Usually, during neural ODE training RK solver with fixed Butcher tableau is used, and only the right-hand side (RHS) function is trained. We propose to use the whole parametric family of RK solvers to improve robustness of neural ODEs.

Requirements

  • pytorch==1.7
  • apex==0.1 (for training)

Examples

For CIFAR-10 and MNIST demo, please, check examples folder.

Meta Solver Regimes

In the notebook examples/cifar10/Evaluate model.ipynb we show how to perform the forward pass through the Neural ODE using different types of Meta Solver regimes, namely

  • Standalone
  • Solver switching/smoothing
  • Solver ensembling
  • Model ensembling

In more details, usage of different regimes means

  • Standalone

    • Use one solver during inference.
    • This regime is applied in the training and testing stages.
  • Solver switching / smoothing

    • For each batch one solver is chosen from a group of solvers with finite (in switching regime) or infinite (in smoothing regime) number of candidates.
    • This regime is applied in the training stage
  • Solver ensembling

    • Use several solvers durung inference.
    • Outputs of ODE Block (obtained with different solvers) are averaged before propagating through the next layer.
    • This regime is applied in the training and testing stages.
  • Model ensembling

    • Use several solvers durung inference.
    • Model probabilites obtained via propagation with different solvers are averaged to get the final result.
    • This regime is applied in the training and testing stages.

Selected results

Different solver parameterizations yield different robustness

We have trained a neural ODE model several times, using different u values in parametrization of the 2-nd order Runge-Kutta solver. The image below depicts robust accuracies for the MNIST classification task. We use PGD attack (eps=0.3, lr=2/255 and iters=7). The mean values of robust accuracy (bold lines) and +- standard error mean (shaded region) computed across 9 random seeds are shown in this image.

Solver smoothing improves robustness

We compare results of neural ODE adversarial training on CIFAR-10 dataset with and without solver smoothing (using normal distribution with mean = 0 and sigma=0.0125). We choose 8-steps RK2 solver with u=0.5 for this experiment.

  • We perform training using FGSM random technique described in https://arxiv.org/abs/2001.03994 (with eps=8/255, alpha=10/255).
  • We use cyclic learning rate schedule with one cycle (36 epochs, max_lr=0.1, base_lr=1e-7).
  • We measure robust accuracy of resulting models after FGSM (eps=8/255) and PGD (eps=8/255, lr=2/255, iters=7) attacks.
  • We use premetanode10 architecture from sopa/src/models/odenet_cifar10/layers.py that has the following form Conv -> PreResNet block -> ODE block -> PreResNet block -> ODE block -> GeLU -> Average Pooling -> Fully Connected
  • We compute mean and standard error across 3 random seeds.

References

[1] Wanner, G., & Hairer, E. (1993). Solving ordinary differential equations I. Springer Berlin Heidelberg

Owner
Julia Gusak
Julia Gusak
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÃœWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÃœWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022